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A Technical Study of Dynamic Data
Exchange Under Presentation Manager
The features of the Presentation Manager DDE Application Program Interface
(API) are explored in this article. In addition to an overview of the calls, messages,
and structures that DDE uses, this article demonstrates DDE with an application
that implements a dynamic graphical exchange between OS/2 processes.

Creating a Virtual Memory Manager to
Handle More Data in Your Applications
Using a virtual memory manager (VMM) as a replacement for heap-based
allocation gives an application more flexibility in dealing with huge amounts of
data. This article presents a generalized VMM that can be used in any application
that needs memory management beyond that of malloc.

Using the OS/2 Video I/O Subsystem to
Create Appealing Visual Interfaces
The OS/2 video (VIO) subsystem offers the display services that are required by
character-based applications. This article guides you through the VIO subsystem,
examining screen virtualization, VIO data structures, pop-up programs, and how
to create an appealing visual display in character mode.

Investigating the Debugging Registers
of the Intel® 386™ Microprocessor
The Intel 386 microprocessor provides built-in debugging support through six
special debugging registers. This article examines the debugging feature of the
386 and how debuggers work with them on your code. A debugger that
supplements the setting of breakpoints by old-style debuggers is created.

Strategies for Building and Using OS/2
Run-Time Dynamic-Link Libraries
With dynamic-link libraries only one copy of any given function needs to be in
memory where it is then shared by all sessions requiring it. Run-time linking lets
you load functions as you need them and, when necessary, discard them just as
easily. The five function calls necessary for run-time linking are discussed.

How the 8259A Programmable Interrupt
Controller Manages External I/O Devices
Hardware interrupts occur in response to electrical signals received from
peripheral devices such as serial ports or disk controllers and are given priority
servicing by the CPU. This article focuses on maskable interrupts and how
interrupt handler routines enhance program control of input/output devices.

01ohonephone

10

|—i Allocated rs Free
I—I blocks blocks

39REGISTER SET

=he lp  F3=INT3 F10=ex i t  F9=ap

3B 00001372 EAX 00003020 EBP 000

00002 2 ED EBX 00008 3 F3 FS 000

00000000 ECX 00000000 GS 000

>0 00000000 EDX 00001 A 31 CR0 FFF

FNDFILE3.DLL
(includes debug(), do_find() and run-time
setup for the routine pointer)

(run-time link)"

FNDFILE2.DLL
(includes do_list())

(run-time linl

(static DLL link)

DOSCALLS.DLL
DosFindFirst() Routine
(and all other DLLs from load-time linking

I
Interrupt
request
register

(IRR)

Priority
resolver

I
pt mask register

(IMR) ________



Advanced Techniques for Using
Structures and Unions in Your C Code
Structures are used to organize data in your code. When they contain references
to themselves in the form of a pointer, structures can produce unlikely syntax
errors. This article continues our discussion of structures as it leads you through
methods of correctly using pointers to structures by analyzing sample code.

1 typedef struct {
2 si *slptr;
3 char sldata
4 } si;
5
6 main()
7 {
8 si slinstan
9
10 /* ... */
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A rticles about OS/2 systems, Presentation Manager,
and Microsoft® Windows play a prominent role in MSJ,
therefore some readers mistakenly assume we have forgotten
that many of them are gainfully employed in the MS-DOS®
world and will be for many years to come. We haven’t.

In each issue we have tried to include articles for those readers who are
continuing to work in the MS-DOS environment, and on topics of general
concern such as Greg Comeau’s articles on structures in C programming.
The reality of DOS is that 640Kb of memory never seems to be enough. In
this issue, Marc Adler presents a practical virtual memory manager that he
developed for use with his ME editor. It offers MSJ readers a way to easily
use more data in their programs by swapping memory as needed.

The Intel® 386™ microprocessor is becoming increasingly important in the
marketplace and in particular with software developers. In keeping with our
goal to provide the most up-to-date information, we asked two Intel
engineers to take you on a guided tour of the 386 debugging registers with
a view toward optimizing the efficiency of your development on 386
systems. They offer an interesting mini debugger that takes advantage of
this little known 386 feature.

For OS/2 programmers, two IBM engineers discuss changes that were made
to the Windows Dynamic Data Exchange (DDE) messaging protocol to
make it run efficiently in the multithreaded world of Presentation Manager.
They examine the technical aspects of DDE, give tips on writing an
application that makes effective use of the protocol, and demonstrate DDE
with a graphics exchange program.

In future issues we will have more articles for DOS developers, including
a three-part series that explores the secrets of pointers in C programming,
and for those for whom C is not the only programming language, a candid
discussion by Ethan Winer about BASIC programming in the OS/2
environment. —Ed.
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Susan Franklin and Tony Peters

he IBM Corporation and Microsoft
recently shipped an updated version of the OS/2
operating system, which contains some important
enhancements over the initial release of the OS/2
systems. The major enhancement to the OS/2 Ver-

sion 1.1 release is the inclusion of the Presentation Manager
(referred to herein as PM) as a standard component. The OS/2
Presentation Manager is based on Microsoft® Windows and
provides the same benefits Windows provided to DOS: a
windowed, graphical user interface and support for a variety
of input and output devices.

An important component of Microsoft Windows that has been
implemented in OS/2 PM is the Dynamic Data Exchange (DDE)
protocol. The Windows DDE version was described in “Inter-Pro-
gram Communication Using Windows’ Dynamic Data Exchange,”
MSJ (Vol. 3, No. 6). DDE is a published message protocol for the
exchange of data between participating programs and has gained
wide acceptance among Windows applications as the standard
messaging protocol for data exchange. The evolution of DDE from
DOS to the OS/2 environment has required some enhancements to
address limitations associated with the original Windows DDE
specification. This article describes that evolution and provides a
graphical data exchange program as an example.

Protocol Modifications
In the Windows environment, DDE provided a consistent, flex-

ible method for communication between applications. When mov-
ing DDE to the multitasking, protected memory environment of the
OS/2 PM, however, certain changes to the protocol were needed.
These changes had to address the new concepts introduced by the
OS/2 environment without significantly changing the DDE model,
which has proved successful in the Windows environment.

An early approach to the migration of the DDE protocol to OS/2
and Presentation Manager was a simple remapping of the message
parameters. The primary change necessary was the parameter used
when actually passing the data to another application, which
requires crossing OS/2 process boundaries. Whereas a handle to the
data is sufficient in the Windows environment, a memory selector is

Susan Franklin is a Software Engineer with the IBM Applications Systems
Division in Fort Worth, Texas working with OS/2 Presentation Manager.

She has published various articles on user interface development.
Tony Peters is a Software Engineer with the IBM Applications Systems Division
in Fort Worth, Texas working with OS/2 Presentation Manager and UNIX. He
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applications were necessary to
explicitly request access to the
atom table. This approach
solved the problems introduced
by protected memory into the
DDE message set. But several
other problems and limitations
still existed. They could be
solved by further modification
of the protocol.

DDE suffered from the two-
parameter limit inherent in PM
messages.  Following the
Windows DDE model, the first
parameter in any DDE message
is the handle of the sending
window. This left just one 32-bit
parameter to pass all other con-
versation parameters and
references to data. Although the
necessary parameters and
selectors could fit into the
remaining long parameter, there
was no room for any future
expansion to the protocol.

Communicating with other
machines on a local area net-
work (LAN) or with other types
of computers proved difficult
given the parameter limits. This
limitation was also a problem if
and when the operating system’s
addressable space increased.
Even in the current environ-
ment, any expansion to the DDE
model or conversation parame-
ters would not be possible given
the lack of parameter space.
Clearly, the protocol had to be
modified such that it permitted
expandability and application
freedom to include additional
parameters as necessary.

In order to expand the param-
eter space for DDE messages,
the PM version of DDE uses the
second DDE message parameter
as a 32-bit pointer to one of two
available DDE data structures.
These structures contain all
necessary DDE conversation
parameters as well as the actual
data when necessary. As the
requirements for DDE change,
this structure can be expanded
without changing the param-
eters of the DDE messages. The

Client Application

DDESTRUCT
with Data

Conversation!
* Parameters [

Initiate

Server Application

Flavor Preference
Data

16% Strawberry ------
•45% Mint

39% Banana

InitiateAck

Request

Figure 1 In the DDE single client/single server model the client application
initiates the conversation, the server acknowledges it, then the server sends
data as the client requests it.

Figure 2: Initiation of a DDE Conversation
case WM_CREATE: /* broadcast the initiate message */

WinDdelnitiate(hwnd, "App_Name", "Graphics_Exchange");
break;

Figure 3: Responding to a DDE Conversation

case WM_DDE_INITIATE: /* respond if app and topic strings match */
pDDEInit - (PDDEINIT)!Param2;
if ((HWND)IP arami •= hwnd) {

if((!strcmp("App_Name", pDDEInit ->pszAppName)) &&
(!strcmp("Graphics_Exchange", pDDEInit->pszTopic))) {

WinDdeRespond(IParaml, hwnd, "Client",
"Graphics_Exchange");

}
}
DosFreeSeg(PDDEITOSEL(pDDEInit));

break;

required to pass data between
separate OS/2 processes. String
data could still be passed in the
global atom table, although
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Figure 4: Server Code for a One-Time Data Transfer

03long address of the structure
permits compatibility to future
system software and other
machines. By packaging all
parameters into one structure,
the message parameters become
more consistent since the vari-
ant parameters are contained in
the structure itself.

All parameters are packaged
into a single structure, so the use
of the atom table is no longer
necessary. Adding string
parameters to the atom table just
introduces a second data access
method that complicates the
protocol. Instead string data is
included in the DDE structures.

Since the majority of DDE
messages will be sent or posted
to windows in a separate
process, the memory containing
the DDE structure had to be
made accessible to the receiving
window. Rather than require
applications using DDE to grant
this access, the PM DDE proto-
col provides new Application
Program Interfaces (APIs) for
sending and posting DDE mes-
sages. Applications do not use
WinPostMsg or WinSendMsg
to transmit DDE messages.
Instead, the message and param-
eters are passed to a system API,
which grants the receiving
window access to the DDE
structure and sends or posts the
message on behalf of the calling
application. These APIs ensure
that the access to the structure is
granted consistently and cor-
rectly, while simplifying the
programming efforts of an
application implementing DDE.

These enhancements to DDE
for OS/2 have provided a stan-
dard framework for applications
to communicate without having
to design a new protocol that
would be suitable for DDE with-
in a multitasking operating sys-
tem. Additionally, using OS/2
DDE provides a concise method
of implementing ever-increas-
ingly complex graphical data
exchange in an efficient manner.

case WM_DDE_REQUEST: /* allocate DDESTRUCT and send data */
pDDEStruct = (PDDESTRUCT)lParam2;
strcpy(szTemp, ”Text_Data");
if((pDDEStruct->usFormat == DDEFMT_TEXT) &&

(!st rcmp(szTemp, DDES_PSZITEMNAME(pDDEStruct )))) {
nNumBytes = (strlen(szTemp) + 2 + strlen(szData));
pDDEStruct = st_DDE_Alloc((sizeof(DDESTRUCT) + nNumBytes),

"DDEFMT_TEXT” );
pDDEStruct->cbData = strlen(szData) + 1;
pDDEStruct->offszItemName = (USHORT)sizeof(DDESTRUCT);
pDDEStruct->offabData « (USHORT)((sizeof(DDESTRUCT) +

strlen(szTemp)) + 1);
memcpy(DDES_PSZITEMNAME(pDDEStruct), szTemp, (strlen(szTemp)

+ i));
memcpy(DDES_PABDATA(pDDEStruct ), szData, (strlen(szData)

+ i)T;
pDDEStruct->fsStatus |= DDE_FRESPONSE;
WinDdePostMsg((HWND)IParaml, hwnd, WM_DDE_DATA, pDDEStruct,

TRUE);
DosFreeSeg(PDDESTOSEL(lParam2));

}
else { /* send negative ACK using their DDESTRUCT */

pDDEStruct->fsStatus &= (~DDE_FACK);
WinDdePostMsg((HWND)IParaml, hwnd, WM_DDE_ACK, pDDEStruct,

TRUE);
}

break;

case WM_DDE_POKE: /* unsolicited data from client */
pDDEStruct = (PDDESTRUCT)lParam2;
strcpy(szTemp, "Text_Data");
if((pDDEStruct->usFormat == DDEFMT_TEXT) &&

(!st rcmp(szTemp, DDES_P SZITEMNAME(pDDEStruct )))) {
strcpy(szData, DDES_PABDATA(pDDEStruct ));
DosFreeSeg(PDDESTOSEL(lParam2));

}
else { /* send negative ACK using their DDESTRUCT */

pDDEStruct->fsStatus &= (~DDE_FACK);
WinDdePostMsg((HWND)IParaml, hwnd, WM_DDE_ACK, pDDEStruct,

TRUE);
}

break;

Figure 5: Server Code for a Permanent Data Link

case WM_DDE_ADVISE: /* set ADVISE bit in window data and ACK */
pDDEStruct = (PDDESTRUCT)lParam2;
if(pDDEStruct->usFormat == DDEFMT_TEXT) {

pWWVar->bAdvise = TRUE;
if((pDDEStruct->fsStatus & DDE_FACKREQ) == DDE_FACKREQ) {

pDDEStruct->fsStatus |= DDE_FACK;
WinDdePostMsg((HWND)IParaml, hwnd, WM_DDE_ACK, pDDEStruct,

TRUE);
}
else {

DosFreeSeg(PDDESTOSEL(lParam2));
}

else { /* Send a negative ACK using their DDESTRUCT */
pDDEStruct->fsStatus &= (~DDE_FACK);
WinDdePostMsg((HWND)IParaml, hwnd, WM_DDE_ACK, pDDEStruct, TRUE);

}
break;

Single Client/Server
In the simplest case, DDE is

used when one application,
called the client application,
requires data from another inde-
pendent application, called the
server application. The classic
example for this model is a
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Figure 6: Server Code for Remote Execution of Commands
the client application broadcasts
a WM_DDE_INITIATE mes-
sage to all other top-level
windows in the system. The
client specifies the string name
of the application expected to
reply, as well as a string name
identifying the topic of the pro-
posed conversation. Either of
these string names may be
NULL to indicate that the
desired server application or the
topic name is not specific and
any application implementing
DDE may participate. The
WM_DDE_INITIATE mes-
sage is not broadcast directly by
the application. Instead, the
client application uses the
WinDdelnitiate call to send the
message. Figure 2 illustrates the
procedure for initiation.

When a server application
gets the WM_DDE_INITIATE
message, it checks the appli-
cation and topic names to deter-
mine whether it will participate
in the conversation. Sample
code for initiate processing
appears in Figure 3. Note that
the application and string
pointers that were input to the
WinDdelnitiate call do not sur-
face as explicit message param-
eters in the WM_DDE_INITIATE
message. Instead, they are
included in the DDEINIT struc-
ture, which is referenced by the
second parameter. In all DDE
messages, the first parameter
contains the window handle of
the window that originated the
DDE message.

If the server decides to par-
ticipate in the conversation,
then the WinDdeRespond call
is used in order to send the
WM_DDE_INITIATEACK
message back to the client appli-
cation. Again, the strings refer-
enced in the parameters of this
call will be copied to the
DDEINIT structure, and the
pointer to the structure will be
passed as the second parameter
in WM_DDE_INITIATEACK.

Once the conversation link

04 case WM_DDE_EXECUTE: /* execute a command */
pDDEStruct = (PDDESTRUCT)lParam2;
strcpy(szCommand, DDES_PABDATA(pDDEStruct );
if(!Dde_Cmd_Processor(szCommand)) { /* parse and execute

the command */
pDDEStruct->fsStatus &= (~DDE_FACK);
WinDdePostMsg((HWND)IParaml, hwnd, WM_DDE_ACK,

pDDEStruct, TRUE);
}
else {

DosFreeSeg(PDDESTOSEL(lParam2));

break;

Figure 7: User DDE Data Format Registration
USHORT Register_DDEFMT(pszFormat)
PSZ pszFormat;
{
HATOMTBL hAtomtbl;
USHORT retn;

hAtomtbl = WinQuerySystemAtomTable();
if (retn = WinFindAtom(hAtomtbl, pszFormat))

return retn;
else

return (WinAddAtom(hAtomtbl,pszFormat));
}

charting program receiving
updates of data from a spread-
sheet and reflecting those
changes by redrawing the chart.
In that case, the charting pro-
gram is the client and the spread-
sheet is the server.

We will begin by following
the logic for the simplest of
cases, the single client/single
server model. In this example,
the purpose of the DDE conver-
sation is the exchange of graph-
ical data between programs. The
server application is any appli-
cation wishing to display a pic-
ture in the client application’s
window. The graphical data is
packaged and sent to the client
application each time the server
application wishes to change the
appearance of its picture.

Figure 1 shows the general
logic flow for the single client/
single server type of application.
The client application initiates
the conversation. Once the ser-
ver acknowledges the initiate,
the client requests the data and
the server sends it inside the
appropriate structure.

A single client/single server
DDE conversation begins when

IParam2
DDESTRUCT{

DDE

Figure 8 The user format for the DDE
graphics format used in the sample program is
shown above. Arrows represent the offset
to the data.
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Figure 9: Allocation of Shared Memory for DDE Message Communication
has been established, the actual
data transfer may take place.
This exchange may be a one-
time data transfer, an ongoing
data transfer, or a transfer of
remote commands.

One-time data transfer is
accomplished by using the
WM_DDE_REQUEST mes-
sage when data is flowing from
server to client and the
WM_DDE_POKE message
when data is flowing from client
to server. In either case, a
DDESTRUCT is allocated and
filled by the client application.
The structure contains status
flags describing the format of
the data that is being requested
(or poked) as well as the status
and the size of the data. Once
the structure is filled, the
WM_DDE_REQUEST or
WM_DDE_POKE message is
posted to the server application
using the WinDdePostMsg API.
This is a call that is used for
all messages except for
WM_DDE_INITIATE and
WM_DDE_INITIATEACK.
The call ensures that the receiv-
ing window handle gets access
to the memory allocated for the
DDESTRUCT.

When the data is being poked,
the WM_DDE_POKE message
is the only one required to com-
plete the transfer, since the
transfer is unsolicited. When the
data is requested, the server
application responds with the
WM_DDE_DATA message. If
the server cannot supply the data
in the requested format, it
responds with a negative
WM_DDE_ACK message.
Figure 4 illustrates the code
required in the server applica-
tion to handle both one-time
data transfer methods.

Perhaps the most common
type of data transfer in DDE
is the establishment of a per-
manent data link between
applications. In that case, the
client application posts a
WM_DDE_ADVISE. The

05/* send a request for data */

/* allocate memory */
DDEstrptr = DDE_Alloc(sizeof(DDESTRUCT), IDS_GDE);
WinDdePostMsg((HWND)IParaml, DDEtoHWND, (ULONG)WM_DDE_REQUEST,

DDEstrptr, TRUE);

PDDESTRUCT DDE_Alloc(size, format)
int size;
char *format;

* 1. Allocate a block of size, bytes
* of giveable, shared memory for DDE call.
* 2. Fill in DDE data format by
* calling Register_DDEFMT((PSZ)format);.

{
SEL ddepsel;
USHORT dasret;
PDDESTRUCT DDEstrptr;

if ((dasret ■ DosAllocSeg(size, & ddepsel, SEG_GIVEABLE)) == 0) {
DDEstrptr = (PDDESTRUCT)SELTOPDDES(ddepsel);
memset (DDEstrptr, (BYTE)NULL, size); /* set allocated memory

to nulls */
/* fill in DDE data format */
DDEstrptr->usFormat = Register_DDEFMT((PSZ)format );

} else { /* error */
return((PDDESTRUCT)NULL);

}
}

Figure 10: Freeing DDE Shared Memory
MRESULT APIENTRY MasterDDEWndProc(hwnd, message,IParaml, lParam2)

DDEstrptr ■ (PDDESTRUCT)lParam2;

case WM_DDE_DATA:

DosFreeSeg(PDDESTOSEL(DDEstrptr));

DDESTRUCT is filled in the
same manner as it is for the
WM_DDE_REQUEST mes-
sage. This message informs the
server application that the
client would like to receive
WM_DDE_DATA messages as
the data change. As in the case of
the WM_DDE_REQUEST mes-
sage, the server responds with a
negative WM_DDE_ACK mes-
sage if the data cannot be sup-
plied in the requested format. If
the data can be supplied, the
client will continue to receive
WM_DDE_DATA messages
until either the conversation ter-
minates or the permanent link is
terminated. Figure 5 shows the
server handling a request for a
permanent data link.

A SINGLE CLIENT/SERVER
DDE CONVERSATION BEGINS

WHEN THE CLIENT
APPLICATION BROADCASTS

A WM_DDE_INITIATE
MESSAGE TO ALL OTHER

TOP-LEVEL WINDOWS
IN THE SYSTEM.
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I

Each DDE message has two parar
it is the same in all cases and is nc
pointer to the DDESTRUCT struc

WMDDEINITIATE

neters. The first parameter, IParaml (a long word), can
>t shown in the table below. The second parameter, IPai
ture for WinDDEPostMsgO or the DDEINIT structure

Requests initiation of a conversation.

ties the handle of the sender’s window;
ram2 (a long word), carries the far >
for the WinDDEInitiate() calls. >

DDEINIT far *

WM DDE INITIATEACK Sent by a server application in response to a
WM_DDE_INITIATE message for each topic the
server wishes to support. The application uses
WinDDEInitiate() to send this message.

DDEINIT far *

WMDDETERMINATE Posted by either application
participating in a DDE conversation
to terminate the conversation.

(reserved) J

WMDDEREQUEST Posted from a client to request data
from a server application.

DDESTRUCT far*

WMDDEACK Notifies an application of the
receipt and processing of a:

WM_DDE_EXECUTE
WM_DDE_DATA
WM_DDE_ADVISE
WM_DDE_UNADVISE
WM_DDE_POKE
WM_DDE_REQUEST (some cases)

DDESTRUCT far*

WM DDE DATA Notifies a client application
of the availability of data.

DDESTRUCT far*

WMDDEADVISE Requests the server application to supply and
update for a data item whenever it changes.

DDESTRUCT far* 1

WMDDEUNADVISE Request to a server application
that a specified item should no
longer be updated.

DDESTRUCT far* t

WMDDEPOKE Request an application to accept
an unsolicited data item.

DDESTRUCT far*

WMDDEEXECUTE Sends a string to a server application to
be processed as a series of commands.

DDESTRUCT far*

When the client terminates
the permanent link, it posts the
WM_DDE_UNADVISE mes-
sage. This message does not end
the DDE conversation; rather,
WM_DDE_DATA messages
will no longer be posted when
data changes.

Another requirement during a
DDE conversation is the execu-
tion of commands by a server
application on behalf of the
client. In this particular case,

WM_DDE_TERMINATE
message is posted when the user
has requested to close the appli-
cation, although this isn't always
the case. Whatever the reason
for the termination, posting of
the WM_DDE_TERMINATE
indicates that no further DDE
messages will be sent. The
application that is posting the
WM_DDE_TERMINATE may
not shut down until the other
application has responded with

DDESTRUCT contains a string
of commands to be executed.
A pos i t i ve  or a nega t ive
WM_DDE_ACK message,
depending on the outcome of the
execution, is posted to the client.
A code fragment for remote
execution of commands is illus-
trated in Figure 6.

Termination of a DDE con-
versation may be instigated by
either the client or the server
application. Typically, the
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another WMDDETERMINATE.
There are no parameters used
with the terminate message.

User-Defined Formats
It is possible for an applica-

tion to create its own DDE data
format if an appropriate,
system-provided data format is
not available. The system pro-
vides one predefined format for
interchanging text strings,
DDEFMT_TEXT. Before an
application uses an application-
defined data format, however, it
must establish a convention for
obtaining a unique ID and regis-
tering that format so other appli-
cations can associate the format
ID in the DDESTRUCT with
their specialized data format.
Although appearing similar to
clipboard data formats, DDE
formats are not to be confused
with clipboard formats. Clip-
board formats identify handle
types, whereas DDE formats
identify the actual layout of the
data in the DDESTRUCT block.
We have chosen to register DDE
formats using the system atom
table. The prefix of DDE for-
mats is DDEFMT_. Using the
atom manager to register DDE
formats guarantees unique IDs
among all applications that use
this method to register DDE
formats.

Figure 7 represents a function,
Register_DDEFMT, which
illustrates how to register a user-
defined DDE data format with
the system. Register_DDEFMT
returns the DDE data format for
either an existing or a newly
created data format. The first
time Register_DDEFMT is

Server ApplicationClient Application

WinDdeRespond(..., "name","topic")
DosFreeSeg(DDEINIT)

WinDdelnitiate(..., "name", "topic")

WinDdelnitiate() processing

Non DDE Application
struct DDEINIT

Default WINPROC processing
does DosFreeSeg for
DDEINIT

"name"
"topic"

"name"
"topic" Broadcast of WM.DDEJNITIATE with

DDEINIT structures

Figure 11__________ The system takes the strings passed in the WinDdelnitiate call
and copies them into multiple DDEINIT blocks which are broadcast to all
applications running on the system.

Server Application Client Application

DosAllocSeg(size, sei, SEG_GIVEABLE)
ptr=PSELTODDES(sei)

WinDdePostMsg(,,, ptr)----------

sel=PDDESTOSEL(ptr)
DosFreeSeg(sei)

r DDESTRUCT

size abData

User Data

OS/2 Shared Memory

Figure 12 The DDESTRUCT is allocated by the server application, passed
by the server to the client, and then released by the client application.

DDE Application
Main Window

Application
Window

Anchor
Window

Conversation
Window

Conversation
Window

Application
Window

07

Figure 13
The parent-child relationship

of DDE windows in our
applications is shown by
this family tree. To facilitate
DDE processing by our
applications, all DDE
windows are isolated under
a single parent window.

MAY 1989



MICROSOFT
SYSTEMS
JOURNAL

phone08

Figure 15Figure 14 Invocation of one server. Invocation of client and DDE
initialization.

Options

invoked for a particular
DDE data format, that
format is registered in the
system atom table. Every
call that is sent to
Register_DDEFMT for a
particular DDE format
string identifier results in
the format being retrieved
and returned to the caller.
Looking ahead, Figure 9
shows an example of a
func t ion  ca l l  to
Register_DDEFMT.

The user DDE data
format for the DDE

shared memory made available
to the recipient. These shared
memory objects need to be freed
properly for OS/2 shared mem-
ory management to be effective.
The data areas containing
szAppName and szTopicName
in the WinDdelnitiate and
WinDdeRespond calls may be
in private or shared memory.
When the WinDdelnitiate and
WinDdeRespond calls are exe-
cuted, the system will copy
those strings into DDEINIT and
make DDEINIT available to the
recipient.

The data area that contains
the DDESTRUCT structure
must be allocated using the
SEG_GIVEABLE flag in the
DosAllocSeg and DosAllocHuge
calls. The WinDdePostMsg API
makes the DDESTRUCT mem-
ory object available to the mes-
sage recipient and frees the
object from the sender.

Any pointers that are part of
the abData field must point to
shared memory. It is the
application’s responsibility to
manage the allocation and shar-
ing synchronization of these
shared data areas. The applica-
tion may use either base OS/2
memory management API calls
or higher level memory sub-
setting common services to
achieve this, as long as the

Figure 16 graphics exchange sample
program in this article is shown
in Figure 8. The format consists
of a graphics descriptor control
block in the abData area. This
graphics descriptor control
block contains, among other
information, an offset pointer to
the graphics data that is passed
in the same shared memory
block following the GDE data in
abData.

The second server is invoked
and signals the client.

AN APPLICATION CAN
CREATE ITS OWN DDE DATA

FORMAT IF AN APPROPRIATE
SYSTEM-PROVIDED DATA

FORMAT IS NOT AVAILABLE.
THE SYSTEM PROVIDES A
PREDEFINED FORMAT FOR

INTERCHANGING TEXT
STRINGS.

Using Shared Memory
DDE uses shared memory for

all communications. Two dif-
ferent types of memory objects
are allocated for DDE transac-
tions—the DDEINIT and the
DDESTRUCT structures. The
way these objects are allocated
may differ, but both result in
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Figure 17: Initiation of a Graphics_Exchange DDE Conversation
case WM_CREATE: /* broadcast the initiate message */

WinDdelnitiate(hwnd, , "Graphics_Exchange");
break;

case WM_DDE_INITIATE: /* reply with an initiate to specific server */
if (hwnd != IParaml) {

if ((!strcmp("Client ", DDEInitPtr->pszAppName)) &&
( • strcmp("Graphics_Exchange", DDEInitPtr->pszTopic))) {
itoa((int)IParaml, itoa_buf, 10);
WinDdelnitiate(hwnd, itoajbuf, "Graphics_Exchange");

}
}
DosFreeSeg(PDDEITOSEL(DDEInitPtr));
break;

memory is managed properly.
The message recipient is

responsible for freeing all mem-
ory objects after retrieving the
information. DosFreeSeg is
used to release the memory.
DDEINIT and DDESTRUCT
must both be released by the
message recipient.

Figures 9 and 10 show the allo-
cation and deallocation of the
shared memory objects neces-
sary for processing of the
WinDdePostMsg API. The first
part of Figure 9 is a call to a local
function, which allocates and
initializes the DDE shared
memory object. The accompa-
nying function, DDE_Alloc(),
does the actual shared memory
allocation by making a call to
DosAllocSegO and clears the
entire shared memory object.
The DDE shared memory block
is initialized with the user-
defined data DDE format by
set t ing usFormat  field in
DDESTRUCT. This is accom-
plished by calling the function
Register_DDEFMT(), which
we previously discussed. By
allocating and initializing the
DDE shared memory objects in
this manner, we can readily
obtain ready-to-use shared
memory objects for each of our
DDE transactions.

Figure 10 shows how deallo-
cation of the DDESTRUCT, in
this case during the processing
of a WM_DDE_DATA mes-
sage, is accomplished by calling
DosFreeSeg with the selector of
the DDE memory object as its
parameter.

DDEINIT and DDESTRUCT
Presentation Manager pro-

cesses the data and allocates the
memory for the WinDdelnitiate
and WinDdeRespond API calls
as shown in Figure 11. The
system takes the strings passed
in the WinDdelnitiate call and
copies the strings into multiple
DDEINIT blocks that are broad-
cast to all applications running

09

Figure 18: Response to a Graphics_Exchange DDE Conversation
case WM__DDE_INITIATE: /* respond if app and topic strings match */

pDDEInit = (PDDEINIT)lParam2;

/* check for null strings or Graphics_Exchange */
if ((HWND)IParaml != hwnd) {

itoa((int)hwnd, szTemp, 10);
if(((!strlen(pDDEInit->pszAppName)) &&

(’strcmp("Graphics_Exchange", pDDEInit->pszTopic))) ||
((!strcmp(szTemp, pDDEInit->pszAppName)) &&
(’strcmp("Graphics_Exchange", pDDEInit->pszTopic))) ||
((!strlen(pDDEInit->pszTopic)) &&
(’strlen(pDDEInit->pszAppName)))) { j

/* create conversation window and respond */ £
hwndConv = WinCreateWindow(hwndDDE,

(PSZ)"DDEConversation",
(PSZ)NULL, WS_VISIBLE,
0,0,0,0, hwnd, HWND_TOP,
++nConvID, (PVOID)NULL,
(PVOID)NULL);

pWWVar->ConvCnt++;
WinDdeRespond(IParaml, hwndConv, "Client",

"Graphics_Exchange");
}

)
DosFreeSeg(PDDEITOSEL(pDDEInit));
break;

on the system. Participating DDE
server applications process the
WinDdelnitiate call by send-
ing a WM_DDE_INITIATEACK
message with the WinDdeRespond
call to the client and freeing the
DDEINIT memory object from
the WinDdelnitiate call. Non-
DDE applications don't respond
to the WM_DDE_INITIATE
message and the shared memory
object is released by the system
default winproc.

Figure 11 also illustrates how
the DDESTRUCT is allocated,
passed, and released by the
client and server applications.
Figure 12 is a diagrammatic view
of DDEINIT processing.

Multiclient/Server Model
Earlier we discussed the

IT MAY BE POSSIBLE,
AND IN A MULTITASKING
ENVIRONMENT SUCH AS

OS/2 IT IS LIKELY,
THAT SERVER APPLICATIONS

MAY HAVE TO SUPPORT
MULTIPLE CLIENTS

AND MULTIPLE CLIENTS CAN
RECEIVE DATA

SIMULTANEOUSLY FROM
MULTIPLE SERVERS.
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Table 2: Presentation Manager DDE Functions
the client or server
application is ini-
tiated first. In a
multiclient/multi-
server application
relationship, mul-
tiple clients and
server appl ica-
tions can be in-
voked  in any
conceivable or-
der, with virtually
any number of
permutations. The
real  power  of
DDE to manage
conve r sa t i ons
e f f i c i en t ly  be-
comes apparent in
imp lemen t ing
mul t i c l i en t /

10 BOOL Wiiil)deInitiate(hwndClient, pszAppName, pszTopicName)

Sends the WM_DDE_INITIATE message to the main window of all
applications. This function creates a DDEINIT structure and
passes the pointer to the structure in lParam2 of the Initiate
message.

MRESULT WinDdeRespond(hvvndClient, hwndServer, pszAppName, pszTopicName)

Sends the WM_DDE_INITIATEACK message back to the sender of the
WM_DDE_INITIATE message. This function creates a DDEINIT
structure and passes the pointer to the structure in lParam2 of
the Initiate Acknowledgment message.

BOOL WinDdePostMsgfhwndTo, hwndFrom, ULONG win, DDESTRl CT far *, BOOL (Retry)

Posts a DDE message to the hwndTo. wm contains the message,
which must be within WM_DDE_FIRST and WM_DDE_LAST. If fRetry is
FALSE, this call returns FALSE if the message could not
successfully be posted. If fRetry is TRUE, this call retries
the posting of the message in one-second intervals until the
message is sucessfully posted.

multiserver relationships.
In managing an N-way con-

versation, the client, the server,
or both applications may be
involved in a one-to-many
conversation. That is, a single
server may be supplying data to
multiple client applications, a
client application may be
receiving data from several
servers, or both of these things
may be happening.

The DDE convention for
managing one-to-many conver-
sations is for the managing
application to open a window—
the conversational DDE win-
dow—for each conversation
and to process the messages in a
generic winproc for each con-
versation based on the con-
versational DDE window
handle. There are several ben-
efits associated with managing
the conversations based on a
window handle assigned to the
conversation.

First, the individual conversa-
tion window handles serve as an
ID for the conversation, which is
guaranteed by the operating
system to be unique. Second,
conversations can easily be
maintained and manipulated by
using PM API calls (for exam-
ple, WinEnumerateWindow)

Table 3: Presentation Manager DDE Data Structures

DDESTRUCT is used for all messages except WM_DDE_INITIATE and
WM DDE INITIATEACK.

The Item string name and the actual data passed are appended to
the DDESTRUCT in the same memory object.

BYTE szItemName[]; /* null terminated item name string*/
BYTE abData[]; /♦ actual data */

DDEINIT is passed in the WM_DDE_INITIATE and WM_DDE_INITIATEACK
messages.

} DDEINIT;

typedef struct _DDESTRUCT {
ULONG cbData; /* allocated size of data */
USHORT fsStatus; /* status flags */
USHORT usFormat; /* DDE format */
USHORT offszItemName; /* offset to item referred to

in this message */
USHORT offabData; /* offset to beginning of data */

} DDESTRUCT;

typedef struct DDEINIT {
USHORT cb; /* size of memory object */
PSZ pszAppName; /* pointer to application

name string in memory object */
PSZ pszTopic; /* pointer to topic name

string in memory object •/

single client/single server DDE
conversation model. It may be
possible, and in a multitasking
environment such as OS/2 PM it
is likely, that 1) server applica-
tions may have to support mul-
tiple clients and 2) multiple
clients can receive data simulta-
neously from multiple servers.
Likewise, there may be little or
no distinction between whether
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case WM_DDE_INITIATEACK: /* establish conversation with server */
iff (( • strcmp("Client", DDEInitPtr->pszAppName)) &&

(!strcmp("Graphics_Exchange", DDEInitPtr->pszTopic))) ||
((!strlen(DDEInitPtr->pszAppName)) &&

(!strcmp("Graph!cs_Exchange", DDEInitPtr->pszTopic)))) {

/* create a window for the conversation
child of DDEanchorHWND */

DDEconversationHWND - WinCreateWindow(hwnd, (PSZ)"DDEJHin",
(PSZ)NULL, WS_VISIBLE, 0, 0, 0, 0,
WinQueryWindow(hwnd, QW_PARENT, FALSE),
HWND_T0P, ++winDDEid, (PVOID)NULL,
(PVOID)NULL);

WinSetWindowULong(DDEconversationHWND, WW_CONV_HWND,
(UL0N6)IP arami);

WinSetWindowULong(WinQueryWindow(hwnd, QW_PARENT, FALSE),
WW_C0NVC0UNT,
WinQueryWindowULong(

WinQueryWindow(
hwnd, QW_PARENT,
FALSE),

WW_C0NVC0UNT)+1);

/* send a request for initial data */
DDEstrptr = st_DDE_Alloc(sizeof(DDESTRUCT) +

strlen("Graphics")+1, "DDEFMT_graphics_data");
DDEstrptr->offszItemName = (USHORT)sizeof(DDESTRUCT);
strcpy(DDES_PSZITEMNAME(DDEstrptr), "Graphics");
WinDdePostMsg((HWND)IParaml, DDEconversationHWND,

(ULONG)WM_DDE_REQUEST, DDEstrptr, TRUE);

/* send an advise to subscribe to
receive future data updates */

DDEstrptr = st_DDE__Alloc(sizeof(DDESTRUCT) +
strlen("Graphics")+1, "DDEFMT_graphics_data");

DDEstrptr->offszItemName = (USHORT)sizeof(DDESTRUCT);
strcpy(DDES-PSZITEMNAME(DDEstrptr), "Graphics");
WinDdePostMsg((HWND)IParaml, DDEconversationHWND,

(ULONG)WM_DDE_ADVISE, DDEstrptr, TRUE);
)
/* free the memory */
DosFreeSeg(PDDEITOSEL(DDEInitPtr));
break;

without having to develop spe-
cific data structures, such as
linked lists, to keep track of con-
versations. Third, it is possible
to easily store and retrieve con-
versational specific data in win-
dow words created with each
conversational DDE window.
We have created one additional
window in each DDE applica-
tion to facilitate DDE process-
ing by our applications.

Each of our DDE applications
creates a DDE anchor window,
which imposes an artificial one-
layer window hierarchy on the
application window structure,
isolating all the DDE windows
under a single parent window.
This lets us search through the
DDE conversations directly
using WinEnumerateWindow
without having to search all
application children windows
for DDE conversations. The
DDE conversation windows are
normally traversed to locate
information specific to a single
conversation or during termina-
tion processing when all the
links of a particular application
are being terminated. Figure 13
illustrates the parent/child rela-
tionship of DDE windows in our
applications.

When either the server or the
client can initiate the conversa-
tion, as can be done in a multi-
client/multiserver application, a
client/server relationship that is
consistent with the single client/
single server DDE conversation
model should be maintained. An
example of this situation is a
newly invoked server applica-
tion participating in an existing
client/server conversation.

When a server is invoked
during execution of a client, the
server must signal the client that
it is willing to participate in a
conversation. For our signal, we
have chosen to send the
WM_DDE_INITIATE mes-
sage with a predefined applica-
tion name. The client responds
to the server’s initiate message

Figure 19 Completion of a link establishment in a GraphicsExchange
DDE conversation.

with an initiate message of its
own, causing the server to re-
spond with a WinDdeRespond
message, as would be done
under the single client/single
server model.

Graphics Exchange
Program

DDE extensions for the multi-
client/multiserver model are
implemented in the sample
graphics exchange program. For
sample purposes, the client
application exists merely to dis-
play graphical pictures repre-
senting the running server appli-
cations. Server applications
may differ greatly in the func-

tion provided, but they all use
DDE to transfer their graphics
data to the client. In our model,
the client always establishes a
permanent data link with the
server to receive updates as the
state of the server application
warrants a change in the
picture’s appearance. We have
chosen Graphics_Exchange as
the topic name for this example.

The server provided in the
example is simulating a phone
messaging service. As phone
messages arrive, they are listed
in the main window of the server
application. Each time a mes-
sage is added, the picture is
updated so that it reflects the
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| Figure 20: WMDDEREQUEST Processing in the Graphics Exchange Server

12 case WM_DDE_REQUEST: /* allocate DDESTRUCT and dump graphics data */
pDDEStruct = (PDDESTRUCT)lParam2;
strcpy(szTemp, "Graphics");
if((pDDEStruct->usFormat ~ pWWVar->usFormat ) &&

( » strcmp(szTemp, DDES_PSZITEMNAME(pDDEStruct)))) {
if(!pWWVar->bNoData) {

nNumBytes = (strlen(szTemp) + 1 + sizeof(GDEDATA) +
LOUSHORT(IPhFigCnt));

pDDEStruct = st__DDE_Alloc((sizeof(DDESTRUCT) +
nNumBytes), "DDEFMT_graphics_data");

pDDEStruct->cbData = sizeof(GDEDATA) + IPhFigCnt;
pDDEStruct->offszItemName = (USHORT)sizeof(DDESTRUCT);
pDDEStruct->offabData = (USHORT)((sizeof(DDESTRUCT) +

strlen(szTemp)) + 1);
pGDEData = (PGDEDATA)DDES_PABDATA(pDDEStruct );
st_Init_GDEData(pGDEData);
pGDEData->cBytes = IPhFigCnt;
strcpy(pGDEData->szItem, "phone");
pGDEData->pGpi - (unsigned char far *)((LONG)pGDEData +

sizeof(GDEDATA));
GpiGetData(hpsGraphics, (LONG)IDSEG_PHONE,

(PLONG)&10ffset, DFORM_NOCONV,
(LONG)IPhFigCnt, (PBYTE)pGDEData->pGpi);

memcpy(DDES_P SZITEMNAME(pDDEStruct), szTemp,
(strlen(szTemp) + 1));

if(lParaml »= WinQueryWindow(hwnd, QW_OWNER, FALSE)) {
pDDEStruct->fsStatus |= DDE_FRESPONSE;
pWWVar->hwndLink = (HWND)IParaml;

}
WinDdePostMsg(pWWVar->hwndLink, hwnd, WM_DDE_DATA,

pDDEStruct, TRUE);
}
else {

WinDdePostMsg(pWWVar->hwndLink, hwnd, WM_DDE_DATA,
NULL, TRUE);

}
DosFreeSeg(PDDESTOSEL(lParam2));

else { /* post negative ACK using their DDESTRUCT */
pDDEStruct->fsStatus &= (~DDE_FACK);
WinDdePostMsg(IParaml, hwnd, WM_DDE_ACK, pDDEStruct, TRUE);

break;

added or deleted from the list.
This lets us focus our attention
on the DDE implementation in
the program rather than on the
function behind the server
application.

In Figure 14 the server appli-
cation has been invoked and is
generating phone messages.
When the client application is
invoked,  it broadcasts the
WM_DDE_INITIATE mes-
sage and the server responds.
Note that the application string
is zero length to indicate that the
client will talk to any application
that will respond to the topic of
Graphics_Exchange. Figure 15
shows the screen after the con-
versation has been linked and
the first picture has been trans-
ferred to the client application.

Upon invocation of a second
instance of the server applica-
tion, the server must signal the
client that it has begun execu-
tion. In our case, the server broad-
casts the WM_DDE_INITIATE
message using the same topic
but specifying a target appli-
cation of Client. This indicates
that the initiate is a special case
in which the server is signaling
its invocation to any client appli-
cations that may want to subse-
quently initiate a conversation.
Upon receiving this message,
the client application broadcasts
another WM_DDE_INITIATE
message. If the application
string name were zero length,
however, the client would inad-
vertently establish a second link
with the original server applica-
tion. To prevent this occurrence,
the client specifies an applica-
tion name, which is simply the
handle of the new server con-
verted to a string name. The
newly invoked server checks the
application name and responds
because the application name
matches its handle. Figure 16
illustrates the message flow in
establishing the second link.

This signaling convention
establishes several rules for ini-

Figure 21: Creating Multiple WM DDE REQUEST Messages During ADVISE
case WM—TIMER: /* insert phone message into listbox,

update picture, and generate new
REQUESTS for all ADVISING windows */

/* listbox and picture have been updated */

hEnum = WinBeginEnumWindows(hwndDDE);
while((hwndEnum = WinGetNextWindow(hEnum))) {

pWWChild = (PWWVARS)WinQueryWindowULong(hwndEnum, QWL_USER);
if (pWWChild->bAdvise) {

pDDEStruct = st_DDE_Alloc(sizeof(DDESTRUCT) +
strlen("Graphics")+1,
"DDEFMT_graphics_data");

pDDEStruct->offszItemName = (USHORT)sizeof(DDESTRUCT);
strcpy(DDES_PSZITEMNAME(pDDEStruct), "Graphics");
WinDdePostMsg(hwndEnum, hwnd, WM_DDE_REQUEST,

pDDEStruct, TRUE);
}
WinLockWindow(hwndEnum, FALSE);

}
WinEndEnumWindows(hEnum);
break;

the server code presented, phone
messages are generated through
the use of the timer. At regular
intervals, phone messages are

current number of phone mes-
sages, and the client is posted a
WM_DDE_DATA message. In
order to limit the complexity of
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Figure 22: WMDDEADVISE and WM DDEJJNADVISE Processing
tiation of a Graphics_Exchange
conversat ion and the sub-
sequent response. The client
application must broadcast a
WM_DDE_INITIATE upon
invocation with the null
application string. It must also
be prepared to receive a
WM_DDE_INITIATE mes-
sage as a signal of a newly
invoked server. If the applica-
tion name Client is present in
this message, then the client
must again broadcast a
WM_DDE_INITIATE, this
time with an application string
containing the handle of the new
participant. Figure 17 contains
the initiate processing for the
Graphics_Exchange client
application.

The server must respond to a
WM_DDE_INITIATE of topic
Graphics_Exchange if and only
if the application string name is
zero length or if it contains the
string representation of the
server’s window handle. Any
other application string name
should be ignored. If the server
responds to the conversation, it
creates a window to handle all
future processing of the new link
and responds to the client using
this window handle. Note that a
window word containing the
conversation link count is incre-
mented at this time. This counter
will be used later by the server to
determine when shutdown may
occur. Figure 18 shows the
response processing in the
Graphics_Exchange server
application.

Upon receipt of the
WM_DDE_INITIATEACK
message, the client application
creates a window to process the
link. Just as the server did, the
client increments a conversation
link count stored in its window
word. This will be used during
TERMINATE processing. The
WM_DDE_REQUEST and
WM_DDE_ADVISE messages
are posted to the server on behalf
of the newly created conversa-

case WM_DDE_ADVISE: /* set ADVISE bit in window data and ACK */
pDDEStruct = (PDDESTRUCT)lParam2;
if(pDDEStruct->usFormat == pWWVar->usFormat) {

pWWVar->hwndLink = (HWND)lParaml;
pWWVar->bAdvise = TRUE;
if(pDDEStruct->fsStatus & DDE_FNODATA) {

pWWVar->bNoData « TRUE;
}
if(pDDEStruct->fsStatus & DDE_FACKREQ) {

pDDEStruct->fsStatus |= DDE_FACK;
WinDdePostMsg(pWWVar->hwndLink, hwnd, WM_DDE_ACK,

pDDEStruct, TRUE);
}
else {

DosFreeSeg(PDDESTOSEL(lParam2));
}

}
else { /* Send a negative ACK using their DDEStruct */

pDDEStruct->fsStatus &= (~DDE_FACK);
WinDdePostMsg(IParaml, hwnd, WM_DDE_ACK, pDDEStruct, TRUE);

}
break;

case WM-DDE-UNADVISE:/* turn off ADVISE bit in window data and ACK */
pDDEStruct
if((IParaml == pWWVar->hwndLink)

(pDDEStruct->usFormat
pWWVar->bAdvise
pWWVar->bNoData
pDDEStruct->fsStatus |= DDE_FACK;
WinDdePostMsg(IParaml, hwnd, WM_DDE_ACK, pDDEStruct, TRUE);

}
else {

pDDEStruct->fsStatus &= (~DDE_FACK);
WinDdePostMsg(IParaml, hwnd, WM_DDE_ACK, pDDEStruct, TRUE);

(PDDESTRUCT)lParam2;
&&

— pWWVar->usFormat)) {
« FALSE;
= TRUE;

}
break;

Figure 23: WM DDE DATA Processing by GraphicsExchange Client
DDEstrptr = (PDDESTRUCT)lParam2;

switch (message){

case WM_DDE_DATA: /* process incoming picture */
gdejptr « (PGDEDATA)DDES_PABDATA(DDEstrptr);
gde_ptr->hwnd_idltem = LOUSHORT(hwnd);

/* add if request * /
if (DDEstrptr->fsStatus && DDE_FRESPONSE) {

WinSendMsg(WinWindowFromID(
WinQueryWindow(hwnd, QW_OWNER, FALSE),
ID_GRAPHICS1),IC_INSERTITEM,
MPFROMSHORT(ICMJEND), (MPARAM)gde_ptr);

} else { /* replace if advise */
WinSendMsg(WinWindowFromID(

WinQueryWindow(hwnd,QW_OWNER,FALSE),
ID_GRAPHICS1),ICJSETITEMSTRUCT,
MPFROMSHORT(gde_ptr->hwnd_idltem),
(MPARAM)gde_ptr);

}

if (DDEstrptr->fsStatus && DDE_FACKREQ) {
DDEstrPtrAck = st_DDE_Alloc(sizeof(DDESTRUCT),

"DDEFMT__graphics_data");
WinDdePostMsg((HWND)IParaml, hwnd, (ULONG)WM_DDE_ACK,

DDEstrPtrAck, TRUE);
}

DosFreeSeg(PDDESTOSEL(DDEstrptr));

break;
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Table 4: Flags Contained in fsStatus Field of DDESTRUCT 1

■ Flag Name Purpose 1

DDEFACK Set for a positive ACK

DDEFBUSY Set if application is busy

DDEFNODATA Application has no data to transfer for ADVISE

DDEFACKREQ Set if application wants ACKS

DDEFRESPONSE Set if message is a response to REQUEST

DDENOTPROCESSED Message not supported by application

DDEFRESERVED Reserved

DDEAPPSTATUS Application specific return

tion window. Figure 19 illus-
trates this processing.

The primary activity of the
server window is the packaging
of the data and posting of the
WM_DDE_DATA message. In
the sample program, this activ-
ity always occurs during
WM_DDE_REQUEST pro-
cessing. That is, even when the
main server application deter-
mines that data should be trans-
ferred as a result of an ongoing
ADVISE, the result is the post-
ing of a WM_DDE_REQUEST
by the main application to all of
the conversation windows on
behalf of the applications being
advised. The format of the data
message is a user-defined data
format that was registered as
discussed previously.

This data format is actually a
data structure, GDEDATA,
which is used as the input struc-
ture for a control that manipu-
lates the graphics for the client
application. Upon receiving a
WM_DDE_REQUEST, the
server allocates memory for the
DDESTRUCT and the under-
lying data structure and fills in
the necessary data fields
required by the client and its
control. The actual graphics
may be deposited in either bit-
map or GPI drawing orders
format and included in the
memory object. In the sample,
they are always deposited as
drawing orders. The whole data
package is then transmitted via
the WinDdePostMsg call. The
complete processing of the
WM_DDE_REQUEST mes-
sage is shown in Figure 20.

Figure 21 shows how the main
server application generates
WM_DDE_REQUEST mes-
sages on behalf of all advised
clients when the data changes.
This is done by enumerating all
child windows of the anchor
window handle and posting the
message to those windows that
are advising a client application.
The advise status of a server

14

Table 5: DDE Macros for DDEINIT and DDESTRUCT Data Structures 1

1 Macro Name Purpose

DDESPSZITEMNAME(pddes) Returns szItemName contained in the <
DDESTRUCT pddes. r

DDES_PABDATA(pddes) Returns a far pointer to the data area
following the DDESTRUCT pddes.

SELTOPDDES(sel) Converts a selector into a far pointer. i

PDDESTOSEL(pddes) Converts a far pointer to DDESTRUCT pddes
to a selector. This is required when using 'J
DosFreeSeg to free the structure.

PDDEITOSEL(pddei) Converts a far pointer to DDEINIT pddei to
a selector. This is required when using
DosFreeSeg to free the structure.

Figure 24: WM CLOSE Processing and Posting of WM DDE TERMINATE
/* send WM_DDE_UNADVISE, shutdown all conversations

for this application, then quit */
case WM_CLOSE:

if (WinQueryWindowULong(hwnd, WW_CONVCOUNT)) {
WinSetWindowULong(hwnd, WW_CLOSE,

WinQueryWindowULong(
hwnd, WW_CLOSE) | WIN_CLOSING_FLAG);

henum = WinBeginEnumWindows(DDEanchorHWND);
while (hwndenum = WinGetNextWindow(henum)) {

WinSetWindowULong(hwndenum, WW_CONV_FLAGS,
WinQueryWindowULong(hwndenum, WW_CONV_FLAGS) |
WIN_TERM_FLAG);

tohwnd « (HWND)WinQueryWindowULong(hwndenum, WW_CONV_HWND);
DDEptr = st_DDE_Alloc(sizeof(DDESTRUCT) +

strlen("Graphics")+l, "DDEFMT_graphics_data");
DDEptr->offszItemName = (USHORT)sizeof(DDESTRUCT);
strcpy(DDES_PSZITEMNAME(DDEptr), "Graphics");
WinDdePostMsg(tohwnd, hwndenum, WM_DDE__UNADVISE,

DDEptr, TRUE);
WinDdePostMsg(tohwnd, hwndenum, WM_DDE_TERMINATE,

NULL, TRUE);
WinLockWindow(hwndenum, FALSE);

)
WinEndEnumWindows(henum);

)
else {

WinPostMsg(hwnd, WM_QUIT, OL, OL); /* quit if no
conversations open */

)
break;
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Figure 25: WM_DDE_TERMINATE, and Posting of APPM CONV CLOSE
application is stored in the win-
dow word of the conversation
window procedure. Figure 22
illustrates the setting of this
status field upon receiving
either the WM_DDE_ADVISE
or the WM_DDE_UNADVISE
message.

The data format for a
Graphics_Exchange conversa-
tion is simply the input structure
to a control, therefore the
WM_DDE_DATA processing
by the client is no more than an
insertion or replacement of the
data structure into the control. If
the DDE_FRESPONSE bit is
set, the client knows that the
WM_DDE_DATA message is
the result of the initial
WM_DDE_REQUEST that
was made after the conversation
was linked. Since this is the first
transmittal of data from the
server, the picture must be
inserted into the graphics con-
trol. If the DDE.FRESPONSE
bit is not set, then the
WM_DDE_DATA message is
the result of an ongoing advise
and the client must replace the
picture in the control with the
new data.

The control messages them-
selves are quite simple. The first
parameter identifies the ID of
the picture in question, and the
second points to the structure
describing and containing the
picture. The internal details of
the control are not relevant; the
control manages the appropriate
sizing and placement of the
graphics data. The complete
WM_DDE_DATA processing
is shown in Figure 23.

During execution of the par-
ticipating applications, the
WM_DDE_DATA messages
will be sent each time the timer
triggers the delivery or removal
of a phone message. The DDE
conversation will continue until
either application terminates the
conversation. In our example,
the conversation is only termi-
nated when the user attempts to

15/* post terminate to server, tell client, and die */
case WM_DDE_TERMINATE:

if (!WinQueryWindowULong(WinQueryWindow(hwnd, QW_OWNER, FALSE),
WW_CLOSE)) {

WinDdePostMsg((HWND)IParaml, hwnd, WM_DDE_TERMINATE,
NULL, TRUE);

}
WinPostMsg(WinQueryWindow(hwnd, QW_OWNER, FALSE),

APPM_CONV_CLOSE,MPFROMLONG(hwnd), (MP ARAM)NULL);
WinDestroyWindow(hwnd);

break;

Figure 26: APPM CONV CLOSE Processing and Subsequent Shutdown
/* decrement conversation count and delete picture */
case APPM_CONV_CLOSE:

WinSetWindowULong(hwnd, WW_CONVCOUNT,
WinQueryWindowULong(hwnd, WW_CONVCOUNT) - 1);

WinSendMsg(WinWindowFromID(hwnd, ID_GRAPHICS1), IC_DELETEITEM,
(MPARAM)LOUSHORT(IParaml),
(MPARAM)NULL);

if (WinQueryWindowULong(hwnd, WW_CLOSE) &&
!WinQueryWindowULong(hwnd, WW_CONVCOUNT)){

WinPostMsg(hwnd, WM_QUIT, OL, OL);
)
break;

close either application. The
WM_CLOSE processing as
well as the subsequent
WM_DDE_TERMINATE pro-
cessing follow the same algo-
rithm in both the client and
server applications.

When a WM_CLOSE mes-
sage is received, the application
enumerates all DDE conversa-
tion windows (by enumerating
on the anchor window). For each
conversation window, a win-
dow word is set to indicate that
the user has requested a shut-
down of the application. At the
same time, another window
word is queried to determine the
handle of the conversation win-
dow with which the enumerated
window is exchanging data.
That window is posted a
WM_DDE_TERMINATE
message by the main application
on behalf of the conversation
window. No further shutdown
processing will take place until
all conversation links have ter-
minated. Figure 24 shows the
WM_CLOSE processing by the
client application. Note that the
server code is very similar.

When it receives the
WM_DDE_TERMINATE

THE MAIN SERVER
APPLICATION GENERATES

WM_DDE_REQUEST
MESSAGES ON BEHALF OF

ADVISED CLIENTS WHEN
THE DATA CHANGES. THIS IS
DONE BY ENUMERATING ALL

CHILD WINDOWS OF THE
ANCHOR WINDOW HANDLE

AND POSTING THE MESSAGE
TO THOSE WINDOWS THAT

ARE ADVISING A CLIENT. THE
ADVISE STATUS OF A

SERVER IS STORED IN THE
CONVERSATION WINDOW

PROCEDURE.
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Table 6: Graphics Control Messages 1

Messages are sent to the control using WinSendMsg, where the message
parameter is the specific message code such as IC_INSERTITEM. IParaml
and lParam2 are set as specified for the particular message.

■ Message and parameters Cause and processing

ICINSERTITEM

Iparaml

(SHORT) iPosition

Iparaml

(PGDEDATA) pltemStruct

Returns
(SHORT) iltemActual

Inserts an item into the graphics control.
This message inserts an item into a graphics
control. iPosition is the 0-based position in the list
where the item should be inserted.
If iPosition is ICM_END, the item is added to the
end of the control.
pltemStruct is a pointer to the GDEDATA
structure. iltemActual is the actual position where
the item was inserted.
If the control cannot allocate space to insert the
item in the list, it will return ICM_MEMERROR.
If the index selected is invalid, the control will
return ICMJNVINDEX.

IC_DELETEITEM

Iparaml

(SHORT) idltem

Iparaml
NULL (Reserved value).

Returns
(SHORT) cltemsLeft

Deletes an item from the graphics control.

This message deletes an item from the graphics
control, idltem is the unique id of the item to be
deleted. cltemsLeft is the number of items
remaining in the list after the item is deleted.

ICSETITEMSTRUCT

Iparaml

Iparaml
(PGDEDATA) pltemStruct.

Returns
(BOOL) bSuccess.

Sets the pointer of the structure whose ID is
specified by idltem to the structure defined by
pltemStruct.

Returns TRUE if successful; otherwise returns
FALSE. (USHORT) idltem

The APPM_CONV_CLOSE
message serves as the signal that
final shutdown may occur. As
each APPM_CONV_CLOSE
message is received, the link
counter is decremented. When
the link counter reaches zero, the
main application checks its
window word to determine
whether a close was requested
for the application. If close was
requested and all links have
successfully terminated, the
application may complete its
shutdown and terminate (see
Figure 26).

Graphics exchange provides
an extremely visual working
example of the use of DDE to
establish permanent links
between separate PM applica-
tions. Support for multiple con-
versation management is added
simply by defining one addi-
tional message and making
extensive use of the window
word and window enumeration
facilities. Of course, these appli-
cations may be expanded to
exchange other data in addition
to the graphics representations
exchanged in this program.

By using our example as a
guide, you should be able to
generalize the implementation
presented in order to develop
your own multitasking interpro-
gram data exchange. We have
found DDE to be a powerful and
flexible element of Presentation
Manager, providing an added
dimension to developing inter-
acting applications in the OS/2
multitasking environment. As
the programming environment
has evolved from Windows to
the extensive capabilities of the
OS/2 Presentation Manager, the
changes made to the DDE
protocol have kept pace with
this new function. Moreover, it
has provided a framework for
further expansion as the
environment continues to
evolve.

16

may continue. In either case, the
conversation window may now
destroy itself, since its conver-
sation link is ending. At this
time, it posts an application-
defined message, called
APPM_CONV_CLOSE, to
indicate to the main window that
the link has successfully termi-
nated. Figure 25 shows the
WM_DDE_TERMINATE pro-
cessing by the client. Again, the
algorithm is the same in the
server application.

message, a conversation win-
dow checks its window word to
determine if the close was ini-
tiated by its own application or
by its conversation partner. If
the close was initiated by the
conversation partner,  the
window posts a corresponding
WM_DDE_TERMINATE to
the sender. If the close was not
initiated by the conversation
partner, the message is simply
an acknowledgment by the part-
ner that terminate processing
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17Creating a Virtual Memory
Manager to Handle More Data
in Your Applications

Marc Adler

□he amount of memory that is available to a program under
the Microsoft® OS/2 operating system is beginning to spoil many
programmers. For example, when Magma’s ME Programmer’s
Text Editor (not to be confused with the Microsoft Editor) was
ported to OS/2, one of the advantages was the ability to easily edit

files larger than the available memory. Going back to the DOS version of the
editor, with its limited file size, became very difficult. To satisfy the desire to edit
very large files under DOS, the DOS version of ME had to be enhanced. The logical
way to do that was to design and build a
virtual memory manager (VMM) that
could handle the demand. Figure 1 lists
the APIs for the VMM.

The motivation for writing a virtual
memory manager was enhanced by a
desire to overcome the shortcomings of
malloc, the staple function of the C run-
time library. Different compiler manu-
facturers have implemented the C
memory allocation functions in different
ways, each implementation being
equally mysterious to the average
programmer.

From a programming perspective, it is
advantageous to take the mysteries out of
malloc and to put the inner workings of a
memory management function at pro-
grammers’ fingertips, to be tinkered with
in special situations and to be traced
meaningfully with the Microsoft
CodeView® debugger. Being able to do
such tracing and tinkering might be very
useful, for example, if one felt that a
program had corrupted a chain of allo-
cated blocks of memory.

Figure 1: The Virtual Memory Manager API

VMInit
Initializes the VMM. Must be called at the beginning of the application before any
memory is requested.

VMTerminate
Shuts down the VMM. Call it at the end of your application.

char far *MemDeref(HANDLE h)
Dereferences the object pointed to by handle h and returns the memory address of that
object.

HANDLE MyAlloc(unsigned size)
Allocates size bytes from the VMM and returns a handle to that block. The block is also
filled with zeros.

MyFree(HANDLE h)
Frees the memory block pointed to by handle h.

SetVMPageSize(int kbytes)
Sets the default page size to kbytes kilobytes. For instance, SetVMPageSize(16) sets the
default page size to 16Kb.

MakePageDirty(HANDLE h)
Sets the dirty bit of the page that contains the memory block referenced by handle h.

Finally, there was an overriding desire to ensure that ME would never again be
limited by the amount of free memory left in a given system. Unbelievably, there
are still people who are using 256Kb machines. The amount of memory that DOS
itself takes up combined with both the memory used by terminate-and-stay-
resident (TSR) programs and the huge size of the EXE files that make up today’s
major applications, severely limits the amount of space that can be allocated, even
with 640Kb of memory.

One specific goal in designing the virtual memory manager for the ME text
editor was to keep it simple enough and general enough so that it could be used in

Marc Adler is the head of Magma Systems, a
company that specializes in programmer’ s
tools, OS/2 and Windows consulting, and

workstation design. He is currently
consulting for several Wall Street firms.
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Figure 2: VMM Handles

Handle Ox| 0003 | 0400 |
1 Page=
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memory
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memory
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expanded memory
page)
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I
[ Page 3

Offset 0x0400

System Memory (RAM)

memory model. (The actual
VMM source code listings,
VM.H and VM.C, are available
on MSJ’5 bulletin boards and
are not included here due to
space constraints—Ed.)

Interspersed throughout the
text will be comments about
possible extensions you could
implement to make the VMM
more powerful. If you decide to
implement any of the sugges-
tions, I’d be interested in receiv-
ing changes, along with your
comments about how they
affected the performance of the
VMM. They should be for-
warded to the Technical Editor
of Microsoft Systems Journal.
(Interesting additions and com-
ments may be published by MSJ
in a future issue.—Ed.)

Initializing the VMM
The first thing every program

that uses the virtual memory
manager must do is to initialize
it. This is done simply by calling
the function VMInit. The main
job of VMInit is to create the
swap file that is used when
blocks of memory must be
paged out to disk. VMInit will
first check to see if the user
defined an environment variable
called METEMP. METEMP
should contain the path name of
where the swap file should go. If
the METEMP variable is not
defined, the swap file will be
created in the current directory.
The use of a user-definable des-
tination for the swap file allows
the user to take advantage of any
RAMdisks that might be avail-
able. Swapping to a RAMdisk,
of course, is significantly faster
than swapping to a hard disk.

You can set the METEMP
variable with a line in your
AUTOEXEC.BAT file that
looks like this :

set METEMP=<swap path>

To create the name of the swap
file, you use the mktemp func-
tion, which is part of the C run-

18

the Page Header

PAGEID

unsigned

unsigned
fdefine
#define

0x0001
0x0002
0x0004

PAGE__IN_1
PAGE_ONJ
IS—DIRTY
SET_P AGE_DIRTY(p) ((p

0x0008
0x0010

>_DIRTY)
#define NON

PAGE;

any other application that
needed memory management
beyond what malloc offers.
Since many people have
installed additional memory
boards in their systems, it was
also desirable to be able to
exploit the capabilities of
expanded memory in the virtual
memory manager. (Even though
ME’s virtual memory manager
supports EMS, its implemen-
tation won’t be covered here.
Such an implementation, how-
ever, would be useful as an exer-
cise for the reader.)

The VMM must be compiled
in large model. The reason is
that we must remain consistent
with the far pointer that we use
and the pointers that some of the
C library routines need (such as
memset). A little work needs to
be done if you would like to use
the VMM under a different

FROM A PROGRAMMING
PERSPECTIVE, IT IS

ADVANTAGEOUS TO TAKE
THE MYSTERIES OUT OF

MALLOC AND TO PUT THE
INNER WORKINGS OF A
MEMORY MANAGEMENT

FUNCTION AT
PROGRAMMERS’

FINGERTIPS, TO BE
TINKERED WITH IN SPECIAL

SITUATIONS AND TO BE
TRACED MEANINGFULLY

WITH CODEVIEW.
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In addition to these two fields,
we have fields that contain the
ID of the page (a unique inte-
ger), the size of the page (in case
we modify the VMM to deal
with different sized pages), a bit
mask to represent the status of
the page (if it’s in memory, on
disk, or both, and whether the
page is dirty), the offset to the
first free byte in the page (used
for implementing a linked list of
free blocks within the page), and
the clock for the least recently
used (LRU) swapping algo-
rithm. We also have fields for
the number of free bytes within
the page and the size of the lar-
gest free block of contiguous
memory. These two fields can
be used in conjunction, in the
event we modify the VMM to do
true compaction of free blocks.

The amount of space allo-
cated for a page should be a
power of 2. With careful experi-
mentation, you might optimize
the performance for your appli-
cation. A routine known as
SetVMPageSize is provided
that allows the application to set
the page size from within your
application. It should be called
directly after VMInit. If you
decide to alter the default size of
a page, then you must call
SetVMPageSize only once
within your application, and the
call should be made before any
pages are actually allocated. The
reason for this is that the swap-
ping algorithm thinks that each
page is the same size. We use a
default size of 4Kb for each
page; however, in the version
that uses expanded memory, the
page size is increased to 16Kb to
match the size of an expanded
memory page.

Within each page, a linked list
of the free blocks within that
page is maintained. This list is
defined by the FREEINFO
structure. Each free block (and
allocated block) has a header
that records the number of bytes
in the block and the offset to the

time library. This function takes
a single parameter, a string rep-
resenting a file name template,
and creates a unique file name
from that template. In this case,
the template that is used is
VMXXXXXX. The mktemp
function will replace the upper-
case Xs with characters that
would make the file name
unique in the current directory.
For instance, mktemp might
return the string VM065291 to
VMInit, and we would use that
as the name of our swap file.

At this point, I must confess
that the virtual memory man-
ager has one major limitation;
the swap space is bounded by the
available space on the swap disk
(plus the amount of expanded
memory that is free). A possible
extension would be to allow the
VMM to use multiple volumes
when swapping, including
swapping over a network to a
totally different computer (such
as a remote file server). If you do
this, beware of the DOS limita-
tion on the number of files that
an application can have open
simultaneously.

Terminating the VMM
Before terminating, an appli-

cation must call VMTerminate
to do some cleanup work.
VMTerminate simply closes the
swap file and deletes it. If you
added routines to do perfor-
mance analysis or to swap to
multiple volumes, you might
need to do some cleanup work at
this point.

Obtaining Memory
The function that obtains

memory from the VMM and
re turns  it to the cal ler  is
MyAlloc. It replaces the stan-
dard call to malloc. Since the
memory returned is zeroed out,
MyAlloc can replace calloc as
well. A single argument is
passed to MyAlloc—the num-
ber of bytes needed—and a
handle is returned.

The word handle is becoming

an increasingly popular term,
mainly because of its frequent
usage in Microsoft Windows. A
handle is simply an identifier
that is associated with a block of
memory; it is used by the inter-
nal routines to identify an object.
In the true spirit of data hiding,
the value of a handle (also re-
ferred to as a magic cookie) will
typically have no meaning to the
application that uses the VMM.

In the case of our VMM, a
handle is an unsigned long quan-
tity comprised of two parts. The
upper 16 bits is the page number
in which the block of memory is
found, and the lower 16 bits
constitutes the zero-based offset
from the beginning of that page.
For example, a handle whose
value is 00030400H signifies
that the memory block is located
400H bytes away from the
beginning of the block allocated
for page 3. Figure 2 illustrates
this example.

This design allows us to have
at most 64Kb pages, each page
containing as many as 64Kb of
memory. Thus our VMM can
access a total of more than 4Gb,
well over the maximum size of
the largest hard disk.

The Structure of a Page
As I stated earlier, MyAlloc

expects a single argument that
represents the amount of mem-
ory we want to allocate from the
VMM. If we cannot find a page
with enough free memory, a new
page will be allocated. At this
point, let’s see what is in the
PAGE data structure.

You’ll find the declaration of
the PAGE data structure (shown
in Figure 3) in the listing of
VM.H. Since a block can reside
anywhere in RAM, we need a
field to hold its far address. A
block can reside on disk, so we
also need a field to hold the off-
set from the beginning of the
swap file where the block is
found. These two fields are
called memaddr and diskaddr.

19
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malloc, but we can choose to use
DOS memory for this if we
want.) We continue to use
_dos_allocmem to grab space
for a page until we run out of
memory. At this point, we have
a page header allocated for the
new page but no block of mem-
ory allocated for its data. What
we need to do is borrow the
memory used by a previously
allocated page. But before that
can be done, we must save that
page’s data somewhere. Then
the new page can use that page’s
block of memory to store its own
data in. This process is called
swapping or paging.

How do we know just where
in the swap file the old page’s
contents should be stored? The
array VMFile.slottable contains
a map of which sectors of the
swap file are used by which
pages. A NULL entry for a sec-
tor means that the sector is free.
When we swap a page to disk for
the first time, we search the slot
table for the first NULL entry
and then write the page to the
corresponding sector.

The remaining question is,
How do we determine which
page to swap out to disk? If we
have a bad algorithm for choos-
ing the swappable page, we can
run into a hideous phenomenon
know as thrashing. If a VMM
thrashes, it is spending an inor-
dinate amount of time swapping
pages between disk and
memory. That can happen if we
choose to swap out a frequently
referenced page.

For our swapping algorithm,
we use the old, time-tested least
recently used algorithm. In
order to implement the algo-
rithm, we must keep a clock
which is incremented every time
a page is accessed. Each page
has a variable which records the
time when it was last accessed.
To find the LRU page, we just
scan the page list for the page
with the minimum clock time
and return a pointer to that page.

20 next free block in the page. A
block that has the value of
FFFFH in its offset field is the
last block in the chain. This
linked list is a simple one with no
implicit ordering of blocks. We
will talk about enhancing this
list when we discuss the freeing
of blocks. Figure 4 shows an
example of a typical chain of
free blocks.

When MyAlloc is called, we
search the page list for the first
page with the necessary amount
of contiguous free bytes. The
function that handles this search
is FindNContigBytesFree. Pre-
cedence is given to pages that
are already in memory, but if
there are no pages in memory
that contain the needed bytes,
we look for the first disk-based
page that has the free space. If
there are no pages either on disk
or in memory that have a suffi-
cient number of contiguous
bytes free, we allocate a new
page and return its address. The
AllocPage routine is responsible
for allocating space for a new
page header and for the asso-
ciated buffer.

Back in MyAlloc, we have a
pointer to a page with the neces-
sary number of bytes free, and
we are assured that the page is in
conventional memory. We then
traverse the list of free blocks
within that page and stop when
we find the first block with the
necessary free bytes. The block
is zeroed out and the handle is
returned to the calling routine.

Swapping Pages
In this version of the VMM, a

call is made to the Microsoft C
library routine, _dos_allocmem,
to allocate memory for a page.
This routine is really a front end
for the main DOS memory allo-
cation service (Int 21H, function
48H). Using the DOS memory
functions lets us totally bypass
the malloc family found in the C
run-time library. (Actually, each
page header is allocated using

A possible enhancement to
the VMM is to implement a
means of making certain impor-
tant pages nonswappable. For
instance, instead of using malloc
to allocate the headers for each
page as we do now, we could
allocate memory from the
VMM for them. However, it
would be disastrous if the page
headers were swapped out to
disk! In this case, we might use a
nonswappable page to hold the
headers and other important
system information. The LRU
algorithm would require a
simple modification that would
tell it not to consider pages
marked as nonswappable.

Another possible enhance-
ment is to keep the list of pages
in a doubly linked list rather than
a singly linked one and to main-
tain a pointer to the tail of the list.
Since we move a page to the
head of the page list whenever
we access that page, we will be
guaranteed that the least
recently used page will be at the
tail of the list. Using this
method, we find the LRU page
merely by looking at the tail; we
don’t need to implement a clock
for the LRU algorithm, and we
don’t have to allocate a counter
for each page in the system.

A Perfect Fit?
The method of allocation fol-

lowed here is called the first fit
approach. It’s given that name
because we stop our search at the
first block that fits the criterion,
that is, the first block that has
enough contiguous bytes free.
Another popular approach is
called best fit; we traverse the
entire free list in search of a
block with the smallest size that
satisfies our criterion. A third
method is called next fit; we
remember the position the last
block that was allocated came
from, and the next time we
search for a free block, we start
at that spot. The first fit method
has the advantage of taking less
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Figure 4: Typical Snapshot of a Memory Chain
Block
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FF indicates lastPage Offset to next free block
block in chainNumber of free bytes in block

time to find the proper memory
block, and best fit has the advan-
tage of reducing fragmentation
(if you use one of the methods of
reducing fragmentation dis-
cussed below).

Fragmentation of memory is a
major concern when designing a
memory manager. It is caused
when you allocate part of a
memory block that has more
free bytes than you really need:
part of that block will be allo-
cated and the remainder will be
put back onto the free list; how-
ever, if the remaining block is
too small for any subsequent
allocation request, it may never
be allocated. For example, let’s
say that I need a block of 24 free
bytes, and after searching the
chain of free blocks, I come to a
block that has 32 bytes free. I
will allocate 24 bytes out of that
block and leave a block of 8
bytes on the free list. This free
block is probably too small to
satisfy any future allocation
request, so it will remain forever
on the free list. That may not
seem so bad, except that the
memory manager will still have
to examine the block whenever
it searches the free list; multiply
this example by the thousands of
memory requests that a typical
application might make and
you’ll see why fragmentation is
a severe problem. Figure 5 illus-
trates a graphic representation
of fragmentation.

A simple way of solving frag-
mentation problems is to round

off an allocation request to a
higher number; the excess bytes
will be included in the free block
that we return to the application.
For the example above, I might
use the simple heuristic of
rounding off all allocations to
the nearest power of 2. If I ask
for 24 bytes, and I come upon a
block of 32 bytes, then I will
return the entire block to the
application. Although 8 bytes
may never be used, I will not
have a small block floating
about in the free list.

Another solution is to perform
periodic garbage collection and
periodic compaction on the
memory blocks, an approach we
will also consider.

Dereferencing Handles
You will recall that the handle

to a memory block is merely an
identifier that tells the VMM
how to reference that block; the
application does not really know
what memory address the
handle points to. Once an appli-
cation obtains a handle to a
memory object, it has to go
through a dereferencing step in
order to use the memory block
that the handle refers to.

Remember, too, that a handle
is an unsigned long value that
comprises the page identifier
and the offset within that page.
The function MemDeref must
be called whenever you need to
transform a handle into a
memory address. For example,
if we wanted to copy the string

Free
blocks

Allocated
blocks

Figure 5 Fragmentation occurs when free
blocks are too small to be allocated.

PERIODIC COMPACTION OF
MEMORY BLOCKS WILL

REDUCE FRAGMENTATION IN
OUR VMM. BEFORE

COMPACTION, THE FREE
BLOCKS ARE INTERMINGLED

WITH THE ALLOCATED
BLOCKS, AND THE FREE LIST

MUST BE TRAVERSED IN
ORDER TO LOCATE A

BLOCK WITH THE DESIRED
AMOUNT OF CONTIGUOUS

BYTES FREE.
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Figure 6: Coalescing
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22 XYZ into an allocated memory
block, we must write the follow-
ing code:

#include "vm.h"

HANDLE h;
char far *s;

/* Note—this assumes
large memory model */

if ((h = MyAlloc(4)) ==
(HANDLE) NULL)

/* perform error
processing */

if ((s = MemDeref(h)) • =
NULL)

strcpy(s, "XYZ");

MemDeref simply breaks the
handle into its constituent parts,
searches for the page with the ID
contained in the handle, swaps
the page into memory if neces-
sary, adds the base memory
address of the page with the
offset of the block that the
handle specifies, and returns a
pointer to the memory address.
One nice thing that MemDeref
also does is to move the refer-
enced page to the front of the
linked list of pages that are cur-
rently in use. The VMM
assumes a locality of reference
within an application—that is,
once a page is referenced, it will
continue to be referenced in the
application’s surrounding code.
Moving the newly referenced
page to the front of the page list
reduces the time needed to tra-
verse the page list for subse-
quent searches for that page.

Touching a Page
If you look carefully at the

code for the WritePage function,
you’ll notice that a page will get
written to disk only if it’s cur-
rently in memory and if the page
has been modified since it was
allocated or last written to disk.
If the same image of a page
exists both in memory and in the
swap file, there is no need to
perform the actual write to disk.

The VMM includes a routine

: Double Indirection

Master
landle block

0005 0160 pointer

104
108

0005 1490
0005 2588
0005 3200

=mem_alloc (32)

Figure 8:

Master
landle block

0005 0000
0005 0080
0005 0140
0005 0180

104
108
112

;=memalloc (32)

but
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to that block. This is illustrated
in Figure 7.

Figure 8 illustrates what hap-
pens when we compact a num-
ber of memory blocks. Even
though the blocks shift in mem-
ory, the pointers to the blocks
remain stationary. Since all our
application knows about are the
indirect pointers, and since the
position of those pointers
doesn’t change, the memory
manager does not have to alert
the application when the com-
paction operation occurs.
Everything is totally invisible to
the application. (Actually, in
Microsoft Windows Version
2.x, an application can choose to
be alerted when allocated blocks
are moved by specifying the
GMEM_NOTIFY flag in the
call to GlobalAlloc.)

As you can see from the dia-
grams in Figures 7 and 8, the
double indirection method
requires one extra memory ref-
erence in order to dereference a
memory handle. However, with
the speed of modem day CPUs
increasing yearly, the extra
memory reference is not as
much of a problem as it used to
be. If you consider the reduction
of time involved in searching
the free list, and also take into
account the elimination of frag-
mentation, you’ll see why the
designers of Windows chose the
doubly indirect way of doing
these things.

The McBride Allocator
Let’s take a brief look at

another virtual memory man-
agement package, VMEM by
Blake McBride. VMEM (see
Figure 9), which also comes with
full source code, uses the double
indirection method to achieve
high performance. Although it
does not support expanded
memory at this time, it compen-
sates for this deficiency by
allowing compaction of the
swap file. It also uses one of the
enhancements that was men-

that sets the dirty bit of the page
that contains a referenced mem-
ory block. The MakePageDirty
function takes a single argu-
ment, the handle of a memory
block, and searches for the page
corresponding to that block.
When that page is located, its
dirty bit is set. This scheme
ensures that when we modify a
certain portion of memory, the
associated page will be swapped
properly when memory begins
to run low.

Referring to the example
above, if we wanted to change
the bytes pointed to by handle h
to the string ABC, we would
need to do the following :

s = MemDeref(h);
strcpy(s, "ABC");
MakePageDirty(h);

Freeing a Memory Block
When a memory block is no

longer needed, we call the
MyFree routine to release it
back into the memory pool.
MyFree takes a single argu-
ment—the handle to the mem-
ory block that we will release.
To release a memory block, we
simply place it on the page’s
linked list of free blocks and
increase the number of free
bytes within that page. What
makes the operation a little more
complicated is the fact that we
would like to examine the
blocks adjacent to the newly
freed block, and if they are free,
coalesce them with the newly
freed block. When coalescing is
done, our most important statis-
tic, the number of contiguous
free bytes, also increases.

To increase how quickly we
traverse the linked list of free
blocks and to help us examine
adjacent blocks, we keep the list
sorted by the blocks’ offsets.
When we free a block, we tra-
verse the list until we find a free
block whose offset is greater
than that of the newly freed
block. Then we insert the newly
freed block in the list before this

23block. Figure 6 illustrates a typi-
cal coalescing action.

The astute reader will notice
that although the user can theo-
retically request up to 64Kb of
memory (the maximum value of
the argument to MyAlloc), the
amount of memory requested is
limited to the size of the page
block. To accommodate this
limit, we can modify the VMM
to dynamically modify the basic
page block size if a request
comes in that is too large.

The Double Indirection
Method

Earlier, we alluded to the fact
that periodic compaction of the
memory blocks would reduce
fragmentation in our VMM.
Before compaction, the free
blocks are intermingled with the
allocated blocks, and the free list
must be traversed in order to
locate a block with the desired
amount of contiguous bytes
free. After compaction, all the
allocated blocks are pushed to
one side of the page, and a single
large free block is created out of
the remaining space. When we
look for a free block to allocate,
there is only one block to exam-
ine in the page.

Compaction presents one
major problem, however. If we
move an allocated block to
another position in memory, we
must modify all our appli-
cation’s variables that point to
that block to point to the new
place in memory. But how does
the memory manager know
which variables point to that
memory block?

To solve this problem, we use
a scheme known as double indi-
rection. Double indirection has
been made popular by the
memory managers of both the
Macintosh® and of Microsoft
Windows. When an application
requests a block of memory, we
will return not a pointer to that
block, but a pointer to a pointer
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1 ________Figure 9: The McBride VMEM Virtual Memory Manager API

char far *VM_addr(VMPTR_TYPE voh, int dirty, int fFreeze)
Dereferences the memory handle voh. The variable dirty should not be zero if you are
going to change the contents of the memory block. fFreeze is not zero if the block’s
position in memory should be frozen.

VMPTRTYPE VM_alloc(long size, int fClear)
Allocates size bytes from the memory pool. If fClear is not zero, the memory block will
be cleared to zeros.

VM_dcmps
Initiates compression of the swap file. The compression method may be selected with
VM_parm.

int VM_dump(char *filename)
Dumps the entire contents of the VM system to the disk file filename. Returns 0 if the
dump was successful, nonzero if not.

void VM_end
Terminates VMEM. The swap file is deleted, but real memory is not released back to
the operating system.

void VM fcore
Same as VM_end, except that all real memory is returned to the operating system.

void VM free(VMPTR TYPE voh)
Frees the object referenced by handle voh.

int VM_rest(char *filename)
int VMfrestfchar filename)
Restores the VMM to a previous state that was saved by VM_dump. The main
difference between VM_rest and VM_frest is that the VM_rest will read in the memory
blocks only as they are needed and is therefore much faster than VM_frest.

int VM_init
Initializes VMEM.

void VM_parm(long rmmax, long rmasize, double rmcompf, long dmmfree, int
dmmfblks, int dmctype)
Sets various VMEM parameters. Used to fine-tune the system. The arguments are the
following:

rmmax — maximum amount of real memory that VMEM will request
rmasize — minimum amount of real memory that VMEM will request
rmcompf — real memory compression factor
dmmfree — determines when automatic swap file compression occurs
dmmfblks — another method used to determine when swap file

compression occurs
dmmctype — type of swap file compression used

VMPTR TYPE VM realloc(VMPTR TYPE voh, long newsize)
Reallocates the memory block pointed to by voh and returns a handle to the new block.

long *VM_stat
Used to obtain various statistics about the current state of VMEM.

24 With the single file method,
even though the allocated
blocks have been moved, the
size of the swap file will never
decrease. With the dual-file
method, you need twice the disk
storage during the compression
operation.

VMEM also has the ability to
save and restore entire virtual
memory images to and from
disk. This capability is ideal if,
for example, you’d like to save
the entire state of the virtual
memory system, release the
memory back to DOS, shell out
a large program (like a com-
piler), and restore the state of the
system when the shelled pro-
gram is completed.

A study of the VMEM API
will reveal that you have a bit
more control over the operating
parameters with VMEM than
you do with our simple memory
allocator. The API lets you
choose whether you want to
clear the memory when you
allocate, set the dirty bit of a
block when you deference that
block, and directly change some
of the important operating
parameters of VMEM.

Using a VMM as a replace-
ment for heap-based allocation
gives an application more flexi-
bility in dealing with huge
amounts of data. I believe that
virtual memory is best done at
the operating system level (for
example, using Microsoft OS/2)
and kept invisible from all appli-
cations in the system. But since
a large part of the market is, and
will remain for some time to
come, firmly entrenched in the
DOS world, virtual memory
managers are still needed. In the
future, all operating systems
will have built-in virtual mem-
ory and will make use of the
dedicated memory management
chips produced by semiconduc-
tor vendors like Intel and
Motorola. Let’s hope that that
day is not too far away.

tioned above—it maintains the
virtual memory objects on a
doubly linked list so that there is
always a pointer to the least
recently used object.

The user has a choice of two
methods of swap file com-
pression. Using the first method,
all objects are moved to the
beginning of the swap file, so

that one large hole remains at the
end. The second method uses
two swap files; all allocated
objects are copied from the first
swap file to a newly created
second swap file, then the origi-
nal swap file is deleted.
Although both methods produce
the same results, each method
has an important advantage.
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25Using the OS/2 Video I/O
Subsystem to Create
Appealing Visual Interfaces

Richard Hale Shaw

u he most noticeable attribute of
an application is the way it visually interacts with
the user. If the application looks snappy and smart,
the user will gain confidence when running it for the
first time. If the application appears slow and dull,

however, the user will become apprehensive or, worse yet, bored.
Thus, from the user’s perspective, the screen is the most essential
mechanism of the application. To an OS/2 application developer,
this makes the video I/O (VIO) the most important of the three
subsystems available to OS/2 character-based applications.

An Overview of VIO
The MS-DOS® operating environ-

ment provided such limited and inef-
ficient video services, that application
developers looked for other means to
improve the video throughput of their
programs. A great number of DOS
applications took advantage of the PC
ROM BIOS video services (Int lOh) or
wrote to and directly manipulated the
video hardware and display buffer. This
approach hindered portability, but it was
not a problem under the real mode of the
DOS operating environment, since only
one application at a time was able to
access the video hardware.

In contrast, OS/2 systems are
endowed with a robust highly efficient
set of video services, which comprise
the VIO subsystem. The subsystem
consists of a set of character-oriented
display services of the type that are gen-
erally required by the current generation
of character-based applications. Think
of VIO as a superset of the PC ROM BIOS services (Int lOh) found
in real mode under DOS, with the difference being that VIO uses
calls instead of an interrupt.

The efficiency and effectiveness of the VIO services are such that

I Hello, world!
from Thread #18

Hello, world!
from Thread #26

there is little need for an application to manipulate the video
hardware directly. Perhaps the only reason an OS/2 application

HELLO1.C, a multithreaded version of Hello,
world, demonstrates many of the features of
the OS/2 video subsystem, including color
support.

Richard Hale Shaw is a contributor to various computer magazines and a
software engineer at Hilgraeve, Inc.

MAY 1989



MICROSOFT
SYSTEMS
JOURNAL

Figure 1: The OS/2 Logical Video Buffer
real operating system like OS/2
offer efficient video services
(where DOS does not), there is
another, more profound reason
for the existence of VIO. The
protected mode of the OS/2
operating environment requires
that system facili t ies be
virtualized and shared among
processes, including access to
the video screen and video hard-
ware. An application should not
be hindered from performing
screen updates while running in
the background, but a fore-
ground application should not
have its screen trashed by a pro-
gram running in the back-
ground. By using VIO, the user
is assured that the video output
of one application will not inter-
fere with that of another applica-
tion. In addition, most VIO calls
can be used in bound programs
that must run under both OS/2
and DOS. Like the ROM BIOS
calls or direct video hardware
control code under DOS, VIO
calls under OS/2 make a pro-
gram less portable to the DOS
environment and more OS/2
specific. Of course, this is true of
all non-FAPI OS/2 calls.

VIO is implemented as a
dynamic-link library (found in
VIOCALLS.DLL), so a pro-
gram’s references to VIO ser-
vices are bound at execution
time, not at link time. Thus, you
can replace VIO functions at any
time without recompiling or
relinking the client application.
This is how the OS/2 Presenta-
tion Manager (PM) handles VIO
calls. By providing its own ver-
sion of VIOCALLS.DLL, PM
can allow non-PM OS/2 pro-
grams to run under it—even in
the PM screen group (that is, in a
PM window).

VIO calls are efficient, but
they do not offer the complex
formatting facilities of the printf
standard library function nor do
they handle output redirection.
A subsystem like VIO must be
fast, so it’s necessary that it

26 The LVB of OS/2 is organized similarly to the Text mode video buffer found on most
IBM® PCs. Each screen character is represented by a 2-byte character-attribute pair or
cell. Further, each character is accessed at an offset of
((row*number_of_columns*2)+column) in the buffer, and the character's attribute is
accessed at the same offset plus 1.
For instance, suppose the video screen is in ordinary black and white, 80 x 25 text
mode, and the upper-left-hand comer looks like the following:

Hello, World
from thread 3

Also, suppose a code fragment that looks like the following is given:

char far *lvb;
unsigned size;

VioGetBuf((PULONG)&lvb, &size, VIOHDL);

The LVB variable can access the material in the video buffer in the following way:
Code Location Value Type Row Column 1

lvb[0] 'H' Character 0 0
lvb[l] 0x07 Attribute 0 0
lvb[2] ’e’ Character 0 1
lvb[3] 0x07 Attribute 0 1
lvb[4] T Character 0 2
lvb[5] 0x07 Attribute 0 2
lvb[6] T Character 0 3
lvb[7] 0x07 Attribute 0 3
lvb[8] 'o' Character 0 4
lvb[9] 0x07 Attribute 0 4

lvb[160] 'f Character 1 0
lvb[161] 0x07 Attribute 1 0
lvb[162] Y Character 1 1
lvb[163] 0x07 Attribute 1 1
lvb[164] 'o' Character 1 2

The attribute values of 0x07 assume that the screen is in standard white-on-black mode.
Color, highlighted, or blinking attributes will have different values.

would need to access the video
hardware while using VIO
would be to generate graphics
images. VIO has only limited
graphics support, but it does
allow an application to move to
and from graphics mode (this
will be discussed in greater
detail below). In the event that
an application does need to
access the video hardware, OS/2
can serialize such accesses and
provide a means for applications
to do so that’s compatible with
its protected mode environment.

Although it’s essential that a

T HE PROTECTED MODE OF
THE OS/2 OPERATING

ENVIRONMENT REQUIRES
THAT SYSTEM FACILITIES BE
VIRTUALIZED AND SHARED

AMONG PROCESSES,
INCLUDING ACCESS TO

THE VIDEO SCREEN.
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Figure 2: OS/2 VIDEO MODES

avoid the encumbrances of the
file system and I/O redirection.
In those instances in which redi-
rection is a consideration, how-
ever, you can use DosRead and
DosWrite. These two kernel
services use VIO to handle the
screen component of their out-
put. Note that when STDOUT
points to a screen device, OS/2
routes it through VIO.

If generic screen output is a
consideration, you’ll find it
simpler and easier to use the
standard C library routines,
since a typical application will
probably use a combination of
these and VIO calls. The VIO
services do, however, allow
considerable flexibility in the
way text is written to the screen,
including control over color and
cursor positioning.

The Logical Video Buffer
As mentioned earlier, OS/2

considers the screen a resource
that is able to be simultaneously
shared by more than one pro-
cess. When a session is started,
OS/2 creates a logical video
buffer (LVB) for it. OS/2 retains
control of the physical video
buffer (PVB). If a program
makes a VIO call, VIO will up-
date the LVB of the program’s
session and notify OS/2 that the
PVB must be updated. While a
session is in the foreground,
OS/2 will duplicate VIO up-
dates of the LVB in the PVB.
Thus, VIO calls always update
the two buffers while a session is
in the foreground. When you
move the session into the
background, OS/2 assumes that
its screen contents are com-
pletely updated in the LVB.
Therefore, it doesn’t have to
save the screen and can quickly
update the PVB from the new
foreground session’s LVB. This
makes screen switches very fast
and allows OS/2 to virtualize
screen access among processes.

While the session is in the
background, VIO services will

271 Adapter 1 Type Colors Columns Rows HRes. VRes.

Mono Text - 80 25 720 350

CGA Text 16 40 25 320 200

CGA Text 16 80 25 640 200

CGA Graphic 4 40 25 320 200

CGA Graphic 16 40 25 320 200

CGA Graphic 2 80 25 640 200

EGA Text 16 40 25 320 200

EGA Text 16 40 25 320 350

EGA Text 16 40 43 320 350

EGA Text 16 80 25 640 200

EGA Text 16 80 25 640 350

EGA Text 16 80 43 640 350

EGA Graphic 4 40 25 320 200

EGA Graphic 16 40 25 320 200

EGA Graphic 2 80 25 640 200

EGA Graphic 4 80 25 640 200

EGA Graphic 2 80 25 640 350

EGA Graphic 16 80 25 640 200

EGA Graphic 16 80 25 640 350

VGA Text 16 40 50 360 400

VGA Text 16 80 50 720 400

VGA Graphic 2 80 30 640 480

VGA Graphic 16 80 30 640 480

VGA Graphic 256 40 25 320 200

cells than a 25-line mode). Each
cell corresponds to one charac-
ter on the screen, with the first
byte of each cell containing the
character itself and the second
byte holding the attribute value
(which controls foreground and
background color, intensity, and
blinking). You can use different
VIO services to write charac-
ters, attributes, or cells to the
video screen.

The VIO subsystem supports
the full range of PC-based video
adapters and displays, including
monochrome, CGA, EGA, and
VGA. The 24 different flavors
of text and graphics modes that
are available are shown in Figure

2. The smallest user-addressable
unit of the screen is a character in
text mode or a pixel or pel in
graphics mode. PC display hard-
ware is memory mapped, so
whatever is currently stored in

continue to write to the session’s
LVB. OS/2 ignores calls from
VIO to update the PVB, since
the foreground session is using
the PVB. When the session is
brought into the foreground
again, OS/2 will copy the con-
tents of the LVB to the PVB and
resume updating the PVB from
the LVB. Thus, as long as the
application uses VIO services to
do its video updates, the LVB
will always accurately depict an
application’s visual state in
character mode. This remains
true whether the application is in
the foreground or background,
and it makes VIO a safe means
of updating the video screen.

Each LVB is organized in 2-
byte pairs, called cells (shown in
Figure 1). The number of cells in
the LVB will vary with the cur-
rent video mode (for example, a
43-line mode will require more
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Figure 3: OS/2 VIDEO ATTRIBUTE BITS f
video memory (the PVB men-
tioned above) is displayed on the
screen. Other than the descrip-
tion of the video buffers given
above, however, it’s not essen-
tial that you know how video
memory is organized or where
it’s physically located, unless
you’re going to access the video
hardware directly. Also, note
that unlike DOS, OS/2 doesn’t
use mode numbers to specify a
video mode. When getting or
setting the video mode, you deal
directly with the video charac-
teristics themselves.

As previously mentioned, the
attribute byte of each pair or cell
controls the colors, intensity,
and blinking characteristics of a
character displayed on screen.
Of the 8 bits in an attribute byte,
the lower 3 bits control the fore-
ground color, a value of 0-7. Bit
3 toggles intensity on or off, bits
4-6 control the background
color, and bit 7 toggles the blink-
ing characteristic. These are
shown in Figures 3 and 4.

VIO and PM
As you are probably well

aware, an OS/2 system offers a
high-powered graphical user
interface called the Presentation
Manager. PM offers a graphical
presentation space, windowing,
scroll bars, icons, and interfaces
for both a mouse and the key-
board. It runs in its own screen
group under OS/2 and can run
other programs in PM windows
in the same screen group. These
capabilities differ from those of
VIO applications under OS/2
Version 1.0, where a back-
ground process remains in its
own screen group and is not
visible until a user brings it into
the foreground screen group.
PM can also run ill-behaved
programs (that is, those pro-
grams that do not run in a PM
window or that write directly to
the PVB), but they will run in
their own screen group like any
other OS/2 program.

Although the Presentation
Manager can do all of the things
mentioned, there is still a need
for VIO. First, PM applications
are complex. They take more
effort to write since simple
visual ideas can be complex to
express in PM code. Second,
some applications (a command-
line utility, for instance) do not
require PM or wouldn’t benefit
very much from PM’s graphical
user interface. Other applica-
tions will have to be redesigned
or completely rethought before
they can take advantage of PM.
These are problems that VIO
can easily solve. In addition,
VIO offers a path to OS/2 that
requires minimal changes to
existing DOS applications.
Thus, it’s considerably easier to
adapt a DOS application to VIO
than to PM.

VlO-based programs will run
under a PM text window. That’s
because the versions of VIO
(and, for that matter, KBD and
MOU) offered with PM (OS/2
Version 1.1) are different from
those supplied with OS/2 Ver-
sion 1.0. The VIO DLL supplied
with PM is windows aware and
can map each character and its
attributes into the appropriate
pattern of pixels inside a PM
window, while clipping the out-
put of each VIO call to fit the
application’s window size. The
entire process is invisible to both
the programmer and the com-
piled program.

If you use VIO in your OS/2
applications today, you won’t
pay an extensive penalty later.
As OS/2 is ported to other pro-
cessor families, VIO calls will
remain the same and should not
require changes to those por-
tions of an application that use
VIO. Future releases of OS/2 for
the 80286 family of processors
won’t require a recompile, since
new versions of VIO will be
supplied with each release. This
is why VIO is implemented as a
dynamic-link package.

28 1 Meaning Value Bit No. 1

Black foreground (character) 0H00 0
Blue foreground (character) 0H01 0
Green foreground (character) 0H02 1
Red foreground (character) 0H04 2
High-intensity foreground 0H08 3
Blue background OHIO 4
Green background 0H20 5
Red background 0H40 6
Blinking character 0H80 7

: OS/2 VIDEO COLOR VALUES

Color Value

0H01Black
Blue
Green

Red
Magenta
Brown
White

0H06
0H07

UNDER OS/2, THE
CHARACTERISTICS OF A

TSR PROGRAM IN THE DOS
ENVIRONMENT ARE NO

LONGER NEEDED SINCE YOU
CAN RUN AN APPLICATION

IN ANOTHER SCREEN
GROUP AND SWITCH THAT
SCREEN GROUP INTO THE
FOREGROUND WHENEVER

AND FOR HOWEVER
LONG YOU LIKE. FROM
THE PERSPECTIVE OF

ACCESSING A TSR
PROGRAM, EVERY
PROGRAM IS A TSR

UNDER OS/2.
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Hel lo ,  world! He l l o ,  world!

from Thread #18 Thread

He l l o ,  wor ld!

Thread Thread

He l l o ,

Thread

Chasing frames demonstrate an animated use of the
VIO scrolling routines. Hello, world frames are launched
from the upper-right-hand corner of the screen and
traverse the screen perimeter counterclockwise.

Hello, world is running in a Presentation Manager
window. Each frame has a different foreground and
background color because an attribute byte for each
frame has been added to the FRAME data type.

The Field

using an
Enhanced

increnent/decrement

press

displayed in Figure 5, which you
can refer to as you read about the
sample program listing.

The VIO data structures pro-
vide all of the information used
by the old IBM® PC ROM BIOS
calls, and more. But instead of
passing information in registers
(the convention in the DOS
environment), OS/2 places the
information in a structure whose
address is passed to the appro-
priate function. Not only does
this make retrieving and chang-
ing the video environment
rather easy, it places a machine-
independent interface on the
entire mechanism. Moreover, in
keeping with other OS/2 func-
tions, it allows the function to
return a single unsigned integer
as an error return status.

For example, the program list-
ing contains a function (Cursor)
that can save or restore the
cursor. Notice that it uses the
VIOCURSORINFO object
type, which includes the starting
and ending cursor scan lines, the
cursor width (in columns or
pixels depending on the current
screen mode), and the cursor
character attribute. Information
in the VIOCURSORINFO
object is easily retrieved and/or
modified via the VioGetCurType

As this series continues, I’ll
include practical tips that will
make it easier for you to produce
efficient, high-quality programs
that take advantage of OS/2
facilities. If you refer back to the
second article in the series,
“Planning and Writing a Multi-
threaded OS/2 Program With
Microsoft® C,” MSJ (Vol. 4, No.
2), there is a discussion of some
of the ways a multithreaded pro-
gram can use up too many CPU
cycles, making it difficult for
other processes to run (particu-
larly those in the background).
You’ll see another example of
this in the program listing for
this article. From the perspec-
tive of using OS/2’s video sys-
tem, however, keep in mind that
a well-behaved OS/2 program is
one that confines itself to the use
of VIO (most standard library
functions call VIO) and does not
access the PVB.

VIO Data Structures
Earlier in this series, I briefly

discussed the new OS/2 header
files, structures, and type defini-
tions. Because of the variety of
objects used to manipulate the
screen, there are several data
structures designed strictly for
VIO programming. These are

HELLO1 retrieves the video configuration
report and prints the information on the screen.

and VioSetCurType functions,
as shown in the listing.

The VIO Pop-up Facility
VIO offers a means by which

a background process can tem-
porarily pop up in the fore-
ground or a foreground process
can temporarily switch to a
blank text screen. If you note the
stress on temporary, you’ll
begin to see that the need for
pop-ups is not the same as with
DOS. Under DOS, a terminate-
and-stay-resident (TSR) appli-
cation could take control of the
processor and pop up over the
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current application for an indef-
inite period of time. Since DOS
is a single-tasking environment,
this became an acceptable
manner of communicating with
a TSR program. And since the
current application was frozen
until the TSR gave up control of
the processor, the TSR could
stay popped up for as long as
you wished.

Under OS/2, the characteris-
tics of a TSR program in the
DOS environment are no longer
needed since you can run an
application in another screen
group and switch that screen
group into the foreground when-
ever, as often, and for however
long you like. From the perspec-
tive of accessing a TSR pro-
gram, every program is a TSR
under OS/2. It’s always there,
running in its own private screen
group, although you can still
issue the commands to the appli-
cation for it to terminate. This is
even more obvious under PM,
since PM and well-behaved
VIO programs that run in the PM
screen group can simulta-
neously display and run in over-
lapping windows.

Remember that a process can
be detached and run in a special
screen group, where it does not
have to have regular keyboard
input or show screen displays.
Detached processes are good
candidates for pop-up programs
under OS/2. You’ll doubtless
come up with other ideas.

Pop ups are exceptions to the
way that OS/2 typically handles
the console. Only one pop-up
program can be activated at a
time: if another process issues a
pop-up call, it will be blocked
until the first one relinquishes
the screen. While a pop-up pro-
gram is active, the user cannot
switch to another process or
screen group. In this sense, the
pop-up program gains tempo-
rary ownership of the fore-
ground screen.

The pop-up facility of OS/2

should only be used by a process
that needs to gain temporary
control of the physical console
(that is, the screen, the keyboard,
or the mouse). Since other pro-
cesses cannot be switched into
the foreground during a pop up,
the pop-up program must be
efficient, do its job, and end the
pop-up session quickly. A good
example of how the OS/2 pop-
up facility is used is the OS/2
Hard Error handler. You can
observe its use of the pop-up
facility by issuing a DIR com-
mand on a disk drive while the
drive door is open.

When a pop-up program
begins, the screen is automat-
ically placed in 80 by 25 text
mode. The screen is restored to
the previous mode when the
pop-up program ends. The VIO
service routines for activating a
pop-up program are VioPopUp
and VioEndPopUp. The func-
tion prototypes for these two
routines are shown in Figure 6.
Note that only a subset of VIO
services are available during the
pop-up call (shown in Figure 7).
An example of code that acti-
vates a pop-up program can be
found in the graphics function in
the sample program listing.

Using the VIO API
Any discussion of the VIO

Application Programming
Interface (API) ought to begin
with a reference to Ray Dun-
can’s article, “Character-Ori-
ented Display Services Using
OS/2’s VIO Subsystem,” MSJ
(Vol. 2, No. 4). It contains an
excellent overview of the API
and discusses most of the ser-
vices that VIO provides. This
article will now pick up where
Duncan’s article left off and, in
doing so, will walk through the
sample program listing pre-
sented here. The sample is a
modified and enhanced version
of HELLOO.C, which was pre-
sented in the preceding article in
this series. This discussion will

provide insight into the practical
application of VIO services.

A New HELLO.C
Recall that HELLOO.C was a

multithreaded version of
HELLO.C. It was designed to
illustrate the use of threads and
semaphores to control and seri-
alize access to resources.
Although technically sound, it
was visually boring, so adding a
variety of colors to it is a good
idea. In addition, the current
version of HELLO l.C (The
actual code listing is available
on MSJ's bulletin boards and is
not included here due to space
constraints— Ed.) has been
restructured and modularized to
allow different sample functions
to be plugged in with ease.

Probably the first thing you’ll
notice in HELLO l.C is that the
macro INCL_SUB has been
defined at the beginning of the
program listing. As such, the
program automatically includes
the function prototypes, macros,
and type definitions that will be
needed to use VIO functions via
the system of header files and
defines that were discussed in
the earlier article.

Next, note that every VIO
function requires a device
handle as its last argument. In
non-PM versions of OS/2, this
handle is always zero. A special
set of VIO calls under PM
(called advanced VIO, or
AVIO) use this argument. The
argument is represented by a
macro, VIOHDL, in the listings
here, making it easy to search for
and replace references to it later.

Finally, in fitting with the
convention used by all OS/2 API
functions, notice that VIO ser-
vices that return an error code
will return a nonzero unsigned
value when an error occurs. You
can always assume that a VIO
service was successful when it
returns a zero value. Also note
that one of the most commonly
used VIO routines, VioWrtTTy,

30
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Direct Screen I/O and Graphics Under VIO

VIO function calls in a foreground process

automatically update both buffers, since they notify OS/2

that the PVB must be updated. You can see this for yourself

by writing a piece of code that first writes some text directly

to the LVB, then calls a VIO service routine to write

additional text, which overwrites part of the text written in

the first step. This updates the LVB and causes OS/2 to

update the PVB. Finally, have the code call VioShowBuf

or manually switch the program into the background and

back again. Until the PVB is updated, only the output of

step 2 will appear on the screen. The text written in step 2

that overlays the text written in step 1 will, however,

survive the screen update after the call to VioShowBuf.

This also illustrates that, in text mode, the LVB always

contains the current visual state of an application.

Going Around VIO to Generate Graphics

Although it’s relatively simple to perform direct screen

writes in text mode, it’s not as easy to work with graphics.

Part of the problem is that you can’t use the LVB, since it’s

only available for direct screen writes in text mode.

Therefore, if your program is going to generate graphic

images, you’ll need to access the PVB directly.

Fortunately, VIO has a mechanism that allows an

application to step around it and manipulate the PVB

directly. This makes it easier to port graphics applications

from DOS and enables you to write OS/2 graphics

applications without the complexity of PM programming.

There are a few caveats to be aware of when writing to

the PVB. First, a routine can only access one adapter and

video mode at a time. To support several adapters in a

graphics routine, you’ll have to write code that can address

each, making the code somewhat hardware dependent.

Next, images drawn in the PVB by an application are lost

when a screen switch takes place. As I said earlier, you

can’t use the LVB in graphics mode. Further, there is no

built-in mechanism for saving the contents of the PVB

when a screen switch takes place. Since it’s not built in,

you’ll have to provide this mechanism yourself. If your

program manipulates any of the video hardware, you’ll

also have to save that information when a screen switch

takes place.
Finally, an application that accesses the physical screen

must run in its own screen group, so it will never run in a

PM window. When run in the PM environment, PM gives

the program its own full-screen window. If you want it to

run in a PM window, you’ll have to rewrite the program to

take advantage of the PM graphic facilities.

With these warnings in mind, there are two problems to

solve when writing a program that generates graphics in a

VIO context. How do you use the mechanism for obtaining

-------------------------------------------------I MBSKnunran—] _

he OS/2 VIO subsystem does not offer any

facilities for a process to access the physical screen

directly. This can pose problems if you are porting

DOS applications that perform direct screen writes or

generate graphics or if you are writing an OS/2 application

that generates graphics without the use of Presentation

Manager (PM). Fortunately, OS/2 offers two indirect

means for accessing the physical screen, depending on the

needs of the application.

Direct Screen Writes in Text Mode
OS/2 systems provide a logical video buffer (LVB) for

each screen group, and all VIO services update the LVB.

When a screen group is in the background, screen updates

can take place without disrupting the screen of the

foreground process. When a screen group is in the

foreground, OS/2 duplicates VIO updates of the LVB in

the physical video buffer (PVB).
You can easily modify a DOS program that performs text

mode direct screen writes to run under OS/2. To do this,

however, it’s essential that you change the code that

updates the PC’s video buffer to write to the LVB instead.

First, you must call VioGetBuf to retrieve the address of

the LVB of your program’s screen group. Since the format

of the LVB is identical to a PC’s text mode video buffer, the

direct screen write code remains largely intact—only the

destination changes. Note that there is no need to include

code that checks for horizontal retrace or that manipulates

the video hardware. OS/2 will take care of these details for

you. When you are finished updating the LVB, your

program should call VioShowBuf to update the PVB from

the LVB. VioShowBuf can update all or a portion of the

LVB to the PVB.
This indirect screen write process remains the same

whether your program is in the foreground or background:

OS/2 will only honor calls to VioShowBuf when the

program is in the foreground and will ignore such calls

when a program is in the background. OS/2 will, however,

update the PVB from the LVB once the program is

switched to the foreground again. Note that although your

program only needs to call VioGetBuf once, when it

begins, your program can (and should) call VioShowBuf as

often as is necessary. VioShowBuf will do nothing while

a process is in a background screen group. This is not a

problem since OS/2 will update the PVB upon a screen

switch.
I should mention that VioShowBuf is very fast. I

modified the Magma Systems ME Editor to perform screen

paging by writing to the LVB and occasionally calling

VioShowBuf. This improved the speed of screen page

updates and made the calls to VioShowBuf appear every

bit as fast as direct screen writes under DOS.

□
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32 Direct Screen I/O and Graphics Under VIO

Saving/Restoring the Video Display and State
The second problem is to see how an application that

manipulates the video hardware can save and restore the
entire video state. The contents of the display buffer, the
video mode, the palettes, the cursor, and so on, will all be
lost if a screen switch takes place. VIO cannot perform this
service for you, since a graphics bitmap might require a
great deal of memory to save and restore the display.
Further, some video hardware adapters have write-only
registers that cannot be saved for later restoration—only
your program will know whether or not it changed a video
register.

Thus, OS/2 can only notify a process when a screen
switch is about to take place. It becomes the application’s
job to save and restore the screen when so notified. This is
accomplished by creating a thread whose job it is to save
and restore the screen. You can register the thread function
with OS/2; then, just before the screen switch takes place,
OS/2 will activate the thread. This lets you construct a
thread to do one job and do it well—to save or restore the
screen and video mode at the appropriate time. Thus, the
thread’s structure, minus the details of saving/restoring the
display and video mode, is quite simple. The thread enters
a loop and immediately calls VioSaveRedrawWait. This
function will cause the thread to block until OS/2 indicates
that a screen switch is about to take place. When this
happens OS/2 will cause VioSaveRedrawWait to return, at
which time the thread must perform the screen save or
restoration. Returning to the top of the loop, the thread
again calls VioSaveRedrawWait, which notifies OS/2 that
the screen switch can continue. The thread will continue to
block until the next screen switch for this process occurs.

Note that upon its return, VioSaveRedrawWait will
indicate whether a screen save or restore should transpire.
And, as with VioScrLock, the system is vulnerable while
the save/restore thread is active, so the thread function
must be as efficient as possible. Finally, note that a similar
function, VioModeWait, is provided if your program only
needs to save the video mode and not the display.
VioModeWait is used in the same fashion as
VioSaveRedrawWait.

Please keep in mind that the discussion presented here
pertains to graphics applications that need to circumvent
VIO or PM. It’s not an issue with ordinary text
applications. There’s nothing to stop you from using
VioGetPhysBuf to write to the screen in text mode, if you
choose. The efficiency you gain will, however, be offset by
the code overhead needed to save and restore the screen.
That’s why the VioGetBuf/VioShowBuf combination is
provided for text applications.

access and writing to the physical screen? And how do you
provide a facility to save and restore the screen before and
after a screen switch?

The Direct Screen Write Process
First, consider how to access and write to the physical

screen buffer. Your program should call VioSetMode to
ensure that the display is in the correct graphics mode. Then
you must obtain the address of the PVB by calling
VioGetPhysBuf, which will return a selector that
corresponds to the address of the physical buffer. When
you’re ready to write to the buffer, you must use
VioScrLock to lock the screen so a background application
will not switch screens during the update. Next, your
program should perform the direct screen write itself. This
should be fast, efficient code, since a screen lock
temporarily hangs the system and prevents a screen switch
from taking place. Finally, your program must call
VioScrUnLock to unlock the screen.

Note that once you’ve retrieved a selector for the
physical buffer address, the remaining steps must be taken
every time your program is going to access the display
hardware and write to the screen. These steps are essential
to inhibit screen switches (which will disrupt the display)
and to prevent other processes from writing to the display
at the same time.

VioScrLock is also a fast, effective way to determine
whether or not your program is in the foreground, since the
caller can either choose to block if the screen is not
available or to return immediately. If the screen is
unavailable, the program can do other processing until it is.
Probably the most effective way to use VioScrLock is to
place the direct screen write code in a function that’s
executed by a separate thread. You can use a semaphore to
tell the thread when to perform a screen update, and the
thread can block on VioScrLock until the screen can be
accessed. This leaves the main thread free to continue with
other work and lets you structure the code so that a
graphics-intensive I/O can be written quickly, in its
entirety, without a great deal of overhead.

VioScrLock is so effective in locking the screen that
nothing can switch the screen while it’s locked. It protects
the system from the application and protects the
application from the system. Even pop ups (including the
hard error handler) cannot be activated during a screen
lock. As a safety valve, OS/2 will cancel the lock and
perform a screen switch after 30 seconds if a program or the
user has requested it. If your graphics application is still
drawing an image when the screen switch takes place, the
picture will be disrupted.
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Figure 5: OS/2 VIO Data Structures
is now called VioWrtTTY in
OS/2 Version 1.1, which has
been released since this series
was initiated.

The Startup Function
As you see from the listing,

main has been simplified to
include only a handful of func-
tions. The first of these, startup,
processes the optional com-
mand-line arguments. As in
HELLOO.C, these arguments
are the number of milliseconds
used in calls to DosSleep, which
allow you to vary the sleep time
between thread events. If you set
these values too low, the pro-
gram will hog CPU time and
radically slow down OS/2 and
other programs. These argu-
ments are discussed in more
detail below.

Startup performs several
other services for the program.
It initiates a keyboard thread
(discussed below). Then it calls
the Screen function to save the
current video display for restor-
ation when the program termi-
nates. Screen takes a single
argument, which determines if
the screen should be saved or
restored. It assumes that the call-
ing program’s screen group is in
text mode and calls VioGetBuf
to retrieve the address of the
screen group’s LVB and the size
of the buffer. Thus Screen can
allocate storage to hold the LVB
contents and copy the contents
of the LVB to the new storage.
To restore the display when the
program terminates, Screen
copies the contents of the stor-
age buffer back to the LVB and
calls VioShowBuf to update the
physical display. This process is
further discussed in the sidebar,
“Direct Screen I/O and Graphics
under VIO”.

Startup also calls the Cursor
function to hide the cursor and
save the cursor position. Like
Screen, the Cursor function
takes a single argument, whose
bits determine whether Cursor

Note that several of the structures shown below include a 'cb' member which
designates the size of the structure in bytes. This field must be set to that size by the
calling program before calling the appropriate VIO service routine. The Sizeof()
macro in the example program performs this exact function.

typedef struct _VIOCURSORINFO

USHORT
USHORT

yStart;
cEnd;

/★ top cursor scan line */
/* bottom cursor scan line */

USHORT cx; /* cursor width */
USHORT attr; /★ cursor attribute character */
} VIOCURSORINFO;

• Note that ex represents the width of the cursor in columns for text mode or pixels when
in graphics mode

•You can hide the cursor by setting attr to Oxffff.

• This structure is used by VioGetCurType and VioSetCurType.
typedef struct _VIOMODEINFO

{
USHORT cb; /* length of structure in bytes */
UCHAR fbType; /* screen mode ♦/
UCHAR color; /* number of color bits */
USHORT col; /* number of text columns */
USHORT row; /* number of text rows */
USHORT hres; /* number of pixel columns */
USHORT vres; /* number of pixel rows */
UCHAR fmt_ID; /* reserved, must be 0 */
UCHAR attrib; /* reserved, must be 0 */
} VIOMODEINFO;

• Note that the fbType member contains one or more of the following values to designate
the graphics mode:
0 - monochrome
VGMT_OTHER - non mono enabled
VGMT_GRAPHICS - graphics mode enabled
VGMT_DISABLEBURST - color burst disabled

• The color member is the number of colors as a power of 2 (i.e., the number of color bits
that define the color):
1 2 colors
2 4 colors
4 16 colors

• This structure is used by VioGetMode, VioSetMode.
typedef struct _VIOPHYSBUF

<
PBYTE pBuf; /* video buffer address */
□LONG cb; /* video buffer length in bytes */
SEL asel[l]; /* array of selectors */
} VIOPHYSBUF;

• The pbuf member is the 32-bit physical address of the first byte in the physical video
buffer. This will vary with the video mode being selected, and must be in range from
OxaOOOO to Oxbffff. You will, of course, have to know what address a particular video
mode uses in order to set this member.

• The asel member is the beginning of an array of selectors used to address the physical
buffer-1 selector for every 64k of buffer space. Thus, the number of selectors will vary
with the size of the video buffer. You should be sure and allocate enough space for the
structure and additional selectors, if needed.

• The cb field includes the total size of the structure plus the size of the additional selectors,
if present.

• This structure is used by VioGetPhysBuf.

• The adapter member can have the following values:
0x0000 mono
0x0001 color graphics adapter
0x0002 enhanced graphics adapter
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should hide, save, or restore the
cursor (that is, position it and
make  it v i s ib l e ) .  It uses
VioGetCurType to retrieve the
cursor character attribute and
VioSetCurType to change the
attribute (and hide the cursor). It
calls VioGetCurPos to save the
current cursor position and
VioSetCurPos to reposition the
cursor. Note that the Screen and
Cursor functions rely on the
VIOCURSORINFO data type.

Startup also resets the screen
rows to the highest number pos-
sible. It does this by calling
VioGetMode to get the current
video mode information (into a
VIOMODEINFO object type).
Then it sets the row parameter to
either 50, 43, or 25 lines and
calls VioSetMode until it is suc-
cessful. This lets the program
run at 50 lines on a VGA moni-
tor, 43 lines on an EGA monitor,
and 25 lines otherwise. The ori-
ginal row count is saved so the
termination function can restore
it before the program exits.

After startup, main calls the
initialization function shown in
the listing. This code is virtually
identical to the code used by
HELLOO.C in the preceding
article and initializes the
FRAME structures.

Flickering Frames
The flickering frames of

HELLOO.C that greeted you
with “Hello, World from
thread. . .” are now encapsulated
in the flicker_frames function.
The code for this function is very
similar to that in the original
program. The function will
create about two dozen threads;
the exact number will vary with
the number of screen rows. Each
thread carries the responsibility
of displaying or clearing its
frame on cue from its sema-
phore, which is stored in its
FRAME data type. And each
thread shares the code found in
the hello_thread function.

Hello_thread now. calls

34 0x0003 video graphics array or PS/2 adapter
The display member can have the following values:
0x0000 monochrome
0x0001 color
0x0002 enhanced graphics display
0x0003 8503 monochrome
0x0004 8512, 8513 or 8514 color
This structure is used by VioGetConfiglnfo and VioSetConfiglnfo.
typedef struct _VI0F0NTINF0

{
USHORT cb; /* length of structure in bytes
USHORT type; /* request type */
USHORT cxCell; /* width of characters */
USHORT cyCell; /* height of characters */
PVOID pbData; /* buffer or font address */
USHORT cbData; /* length of font in bytes */
} VIOFONTINFO;

The type member can contain the following values:
VGFI_GETCURFONT - to retrieve the current font
VGFI_GETROMFONT - to retrieve ROM font
The cxCell member is the width in pixels of each character cell in the font.
The cyCell member is the height in pixels of each character cell in the font.
The pbData member points to a buffer that receives the requested font table.
Alternatively, you can set it to 0x00000000, and VioGetFont can supply an address.
VioGetFont will then copy the address of the font to the pbData field.
This structure is used by VioGetFont and VioSetFont.
typedef

{
USHORT
USHORT
USHORT
USHORT
}VIOPALSTATE;

The cb field must include the length of the structure in bytes plus the size of the additional
array members to hold the palette registers, if present.
The type field must be 0 to retrieve the palette register state.
The iFirst field designates the first register to be retrieved and can be a value from 0x0000
to OxOOOf.

Struct VIOPALSTATE

length of structure in bytes */
request type */
first register to retrieve */
array to receive color values */

cb;
type;
iFirst;
acolor[1];

This structure is used by VioGetState and VioSetState.
typedef struct -VIOOVERSCAN
{
USHORT cb; /*
USHORT type; /*
USHORT color; /*

length of structure in bytes
request type */
color value */

JVIOOVERSCAN;

• The type field should be set to 0x0001 to retrieve the border color.
• This structure is used by VioGetState and VioSetState.
typedef
{
USHORT
USHORT
USHORT
}VIOINTENSITY;

• The type field should be set to 0x0002 to retrieve the blink/background intensity switch.
• The fs field designates the foreground/background color status: 0x0000 for blinking

foreground, or 0x0001 for high-intensity background.
• This structure is used by VioGetState and VioSetState.

Struct VIOINTENSITY

length of structure in bytes
request type */
foreground/background status

cb;
type;
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pressed, the keyboard thread
will again set the done flag and
terminate. This in turn notifies
chasing_frames not to start any
additional frames. It also noti-
fies those frame threads that
have already started to terminate
themselves. If a frame thread is
in the middle of scrolling around
the screen, its sleeptime will fall
to zero and it will race to the
upper-right-hand comer of its
current circuit. Then it will clear
its own semaphore and termi-
nate. As flicker_frames did
before it, chasing_frames calls
WaitForThreadDeath to wait
until all the frame threads have
died; it then returns to main.

There is one catch to the way
the keyboard thread works. The
user must press the Esc key
before the last chasing frame
completes its final circuit.
Otherwise, the keyboard thread
will continue to block until the
Esc key is pressed. The next sec-
tion of the program assumes that
the keyboard is available, so the
keyboard thread must have ter-
minated by that time. Unfortu-
nately, there is no kernel routine
for one thread to kill another. In
any case, it would have made
keyboard-thread even more
complex to cause it to terminate
some other way.

The Video Configuration
The next function called from

main is displayconfig. This
function calls get_user_name
to prompt the user for his or
her  name .  To do t h i s ,
get_user_name displays a
multicolored prompt, and below
it, a highlighted input field
delimited with two markers. It
uses VioWrtCellStr, which
writes a series of character-attri-
bute cell combinations from
those stored in the cellstr array to
create the multicolored prompt.
Then it calls VioWrtNCell,
which can replicate a single cell,
to create the field and markers.
Finally, it restores the cursor,

Flicker_frames will cause each
thread to run one final time,
clear its box (if it is not already
cleared), and terminate. As each
frame thread terminates, it
clears its own frame semaphore
to notify flicker_frames that it is
terminating. In the meantime,
fl icker_frames calls the
WaitForThreadDeath function,
which blocks on each thread’s
semaphore, and returns to the
flicker_frames when all the
threads have terminated. Then
flicker_frames returns to main.

Chasing Frames
New to HELLO l.C are chas-

ing frames, which demonstrate
an animated use of the VIO
scrolling routines. Encapsulated
in the chasing_frames function,
the chasing frames are a series of
Hello, World frames that are
launched from the upper-right-
hand comer of the screen and
traverse the screen perimeter
counterclockwise. Each succes-
sive circuit takes place one
frame height and width inside
the last, so that the frames grad-
ually make their way to the
center of the screen. Another
frame follows after a period of
time (which is set by one of the
command-line sleeptime argu-
ments). The VIO scrolling func-
tions, VioScrollLf, VioScrollDn,
VioScrollRt, and VioScrollUp,
not only cause the frames to
chase each other, they also leave
a trail of each frame’s color
behind. Each chasing frame is
managed by its own thread,
thereby giving a visual confir-
mation to the reality of indepen-
dent threads of execution. The
threads share the code found in
the box_thread function.

Again the keyboard-thread
function plays a role in termi-
nating these threads. After ser-
vicing flicker_frames, the
keyboard thread goes into a
loop, blocking on keyboard
input and ignoring all but the Esc
key. When the Esc key is finally

VioWrtCharStrAtt to do its
screen I/O. This is a VIO service
routine that writes a string at a
specified row and column loca-
tion with a specific attribute.
Note that an attribute byte for
each frame (and thus each frame
thread) has been added to the
FRAME data type and is set and
manipulated by flicker_frames.
Thus, whenever each frame
appears it has a different fore-
ground and background color.
The flicker_frames function
masks off the blinking bit in the
attribute so that the frames do
not blink. In addition, the func-
tion increments the FRAME
attribute byte whenever the
foreground and background
colors match, thereby ensuring
that the foreground and back-
ground contrast.

In order to accommodate the
changes to the FRAME type, the
program now includes a filler
byte. This ensures that the
threadstack member is aligned
on an even-numbered address.
The _beginthread library
routine will not successfully
create a thread whose stack falls
on an odd-numbered address.

The operator initiates the ter-
mination of the flicker_frames
function by pressing the Esc
key. This activates the keyboard
thread, which is contained in the
keyboard-thread function
mentioned above. This thread
blocks on keyboard input and
continues to block until the Esc
key is pressed. Then it blocks on
a semaphore, doneSem, until
flicker_frames clears the sema-
phore. Clearing the semaphore
allows keyboard-thread to
begin the termination sequence
and flicker_frames to postpone
the sequence until it has com-
pleted a round of activating the
frame threads.

Once the semaphore clears,
keyboard-thread continues and
sets the done flag, thereby noti-
fying flicker_frames that it can
terminate the frame threads.
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Figure 6: VIO Functions Allowed While a Pop Up is Active F

VioEndPopUp
VioSetCurPos
VioScrollDn
VioScrollUp
VioWrtCharStrAtt
VioWrtNChar

VioGetAnsi
VioGetCurType
VioScrollLf
VioWrtCellStr
VioWrtNAttr
VioWrtTTY

VioGetCurPos j
VioGetMode
VioScrollRt |
VioWrtCharStr I
VioWrtNCell

Note that these functions essentially allow only a subset of VIO activities: printing text
to the screen, controlling text attributes, modifying the cursor shape and position, :
scrolling text, clearing the screen and setting the display mode.

36 cutes the SaveRestoreScreen
function discussed below. It
calls clear_graphics_screen to
clear the screen and writes a
large Hi in the middle of the
screen. The screen write uses
two loops to traverse a bitmap of
character 1s and 0s (stored in the
hi_bitmap array) and calls the
putpixel function to write a
magenta pixel whenever a 1 is
encountered in the bitmap. You
can get an idea of what this will
look like by staring at the
hi_bitmap array at the beginning
of the listing and unfocusing
your eyes slightly.

Last of all, graphics calls
VioScrUnLock to unlock the
screen and goes into a loop. In
the loop it calls KbdCharln to
block on keyboard input. If the
Esc key is pressed, the function
breaks out of the loop and
returns to main. Otherwise, it
calls VioPopUp to create a blank
80 by 25 text mode screen, prints
a message, and waits for a single
keystroke. Upon receiving the
keystroke, the function calls
VioEndPopUp to end the pop up
and loop back to KbdCharln.

The graphics function illus-
trates two important points: how
to generate graphics under OS/2
and how to save and restore the
screen in graphics mode. When
you run the program, try some
screen switches and press the
wrong key to generate the pop
up. You will find that the warn-
ing message (at the end of
togglebackground) not to press
anything but Esc during the
graphics display is a taunt to
trick the user into generating the
pop up. The SaveRestoreScreen
function is called by OS/2 each
time the wrong key is pressed to
save or restore the graphics
image and mode.

SaveRestoreScreen starts by
calling VioGetMode to save the
current video mode informa-
tion. Following that, it goes into
a loop and immediately calls
VioSavRedrawWait. This call

sets it to the beginning of the
field, and calls the KBD routine,
KbdStringln, to read the user’s
name. After hiding the cursor, it
returns the number of characters
read by KbdStringln.

When displayconfig returns
from get_user_name, it knows
how long the user’s name is, but
it does not have the name itself.
So it calls VioReadCharStr to
read the characters directly from
the screen. Next, it retrieves the
video configuration with
VioGetConfig, prints that infor-
mation on the screen, and
returns to main.

Background Colors
The t ogg lebackground

function illustrates the use of
two o the r  VIO se rv i ce s :
V i o R e a d C e 1 1 S t r and
VioWrtNAttr. The former reads
one or more cells from the
screen. The Background func-
tion, which is called by
togglebackground, uses it to
retrieve the attribute of the char-
acter in the upper-left-hand
comer of the screen. It then
increments or decrements the
attribute value (depending on
the argument passed to it) and
calls VioWrtNAttr to flood the
screen with this attribute. Thus,
togglebackground can prompt
the user to use the arrow keys to
increment or decrement the
background color. Note that
exactly which color it uses the
first time depends on the color of
the character in the upper-left-
hand comer. This may have
been set by one of the chasing
frames. The Esc key is used to

terminate the togglebackground
function and return to main. An
additional message (discussed
below) is printed, warning the
user to press only the Esc key
while in graphics mode.

Generating Graphics
The last facet of VIO that

HELLO l.C illustrates is how to
generate graphics and create a
pop-up program under OS/2.
The graphics function changes
the video mode to CGA graphics
with a 320 by 200 resolution and
writes a graphical Hi in magenta
on a white field. The function
creates a separate thread of exe-
cution, which saves and restores
the screen before and after a
screen switch (see the sidebar,
“Direct Screen I/O and Graphics
under VIO”). Finally, it waits
for the user to press the Esc key
to terminate. If, however, the
user presses any key (other than
Alt-Esc or Ctrl-Esc), a pop up
will be generated that informs
the user to press the Esc key.

The graphics function works
by first retrieving the current
video mode information and
changing the video mode
parameters. It sets them to indi-
cate a video mode of non-mono-
chrome graphics, with four
colors, 40 by 25 characters, and
320 by 200 pixels. Then it calls
VioSetMode to change the
video mode, followed by
VioGetPhysBuf to retrieve a
selector for the CGA video
buffer. It then locks the screen
with a call to VioScrLock.

The function continues by
creating a new thread that exe-
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Figure 7: VIO Services Discussed in the Text

USHORT APIENTRY VioEndPopUp ( HVIO );
USHORT APIENTRY VioGetBuf ( PULONG, PUSHORT, HVIO );
USHORT APIENTRY VioGetConfig ( USHORT, PVIOCONFIGINFO, HVIO);
USHORT APIENTRY VioGetCurPos ( PUSHORT, PUSHORT, HVIO );
USHORT APIENTRY VioGetCurType ( PVIOCURSORINFO, HVIO );
USHORT APIENTRY VioGetMode ( PVIOMODEINFO, HVIO );
USHORT APIENTRY VioGetPhysBuf ( PVIOPHYSBUF, USHORT );
USHORT APIENTRY VioPopUp ( PUSHORT, HVIO );
USHORT APIENTRY VioReadCellStr ( PCH, PUSHORT, USHORT, USHORTHVIO );
USHORT APIENTRY VioReadCharStr ( PCH, PUSHORT, USHORT, USHORT, HVIO );
USHORT APIENTRY VioSavRedrawWait ( USHORT, PUSHORT, USHORT);
USHORT APIENTRY VioScrLock ( USHORT, PBYTE, HVIO );
USHORT APIENTRY VioScrUnLock ( HVIO );
USHORT APIENTRY VioScrollDn ( USHORT, USHORT, USHORT, USHORT, USHORT, PBYTE, HVIO );
USHORT APIENTRY VioScrollLf ( USHORT, USHORT, USHORT, USHORT,USHORT, PBYTE, HVIO );
USHORT APIENTRY VioScrollRt ( USHORT, USHORT, USHORT, USHORT, USHORT, PBYTE, HVIO );
USHORT APIENTRY VioScrollUp ( USHORT, USHORT, USHORT, USHORT,USHORT, PBYTE, HVIO );
USHORT APIENTRY VioSetCurPos ( USHORT, USHORT, HVIO );
USHORT APIENTRY VioSetCurType ( PVIOCURSORINFO, HVIO );
USHORT APIENTRY VioSetMode ( PVIOMODEINFO, HVIO );
USHORT APIENTRY VioShowBuf ( USHORT, USHORT, HVIO );
USHORT APIENTRY VioWrtCellStr ( PCH, USHORT, USHORT, USHORT,HVIO );
USHORT APIENTRY VioWrtCharStrAtt ( PCH, USHORT, USHORT, USHORT,PBYTE, HVIO );
USHORT APIENTRY VioWrtNAttr ( PBYTE, USHORT, USHORT, USHORT,HVIO );
USHORT APIENTRY VioWrtNCell ( PBYTE, USHORT, USHORT, USHORT,HVIO );
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registers the thread with OS/2,
causing the thread to block until
a screen switch of some kind
occurs. At this point, it doesn’t
matter whether the user
switches sessions (using Alt-
Esc), brings up the Session Man-
ager (with Ctrl-Esc), or presses
an inappropriate key that causes
the graphics function to gener-
ate a pop up. If you want a screen
switch to takes place, OS/2 will
activate the SaveRestoreScreen
thread by returning from
VioSavRedrawWait.

Once SaveRestoreScreen
returns from VioSavRedrawWait,
it quickly saves the screen by
copying the contents of the
video screen to a buffer. If a
screen restore has to take place,
the function restores the screen
by resetting the video mode and
copying the buffer contents
back to the video screen.

The graphics function uses
two support functions. The first,
clear_graphics_screen, simply
floods the pixels in the video
buffer with FFH, turning them

white. The second, putpixel,
converts pixel row-column
coordinates into pixel offsets
and stuffs the color bits passed
into the appropriate part of a
byte into the video buffer.

Terminating the Program
The termination function

completes HELLO l.C. It resets
the screen rows to the original
number (restoring the original
video mode at the same time),
calls Screen to restore the screen
to its original state, and calls
Cursor to restore the cursor.
Finally, it calls DosExit to termi-
nate the program.

Here’s a summary of how to
run the program. The program
goes through five stages: flick-
ering frames, chasing frames,
the name prompt, the configur-
ation display, and graphics. The
flickering frames will run indef-
initely until Esc is pressed. The
chasing frames will continue
until the frames are exhausted,
but for best results, terminate
them before the last frame

HELLO1.C  ILLUSTRATES
HOW TO GENERATE

GRAPHICS AND CREATE A
POP-UP PROGRAM UNDER

OS/2. THE GRAPHICS
FUNCTION CHANGES THE

VIDEO MODETOCGA
GRAPHICS WITH A 320 BY

200 RESOLUTION. THE
FUNCTION CREATES A
SEPARATE THREAD OF

EXECUTION, WHICH SAVES
AND RESTORES THE

SCREEN BEFORE AND
AFTER A SCREEN SWITCH.
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Figure 8: Additional VIO Services Not Discussed in the Text
will terminate. If you press any
other keys, it will generate the
pop-up screen. Try recompiling
the  p rog ram wi th  the
SaveRestoreScreen thread com-
mented out. The graphics screen
will be trashed to some degree if
you switch screens without this
thread operating.

Finally, you may find it inter-
esting to alter the sleeptime
variables in the program. Three
of these can be altered on the
command line. The command
line defaults are
HELL01 1 1500 1

which places a minimum of 1
millisecond between the activa-
tion of each flickering frame,
1500 milliseconds (1.5 seconds)
between each chasing frame,
and a 1 millisecond pause when
a chasing frame returns to the
upper-right-hand comer of its
circuit. The most interesting
results occur when using 0 in-
stead of 1 and a low number (like
100) instead of 1500. Keep in
mind, however, that 0 will cause
the program to steal a lot of CPU
time from other processes. But
it’s fun to watch the results.

This concludes our examina-
tion of the OS/2 VIO subsystem.
Additional functions and ser-
vices, which are not essential to
a typical OS/2 application but
should be mentioned, are listed
and briefly discussed in Figures.

You are now ready to tackle
VIO. In fact, you can even
write some sophisticated appli-
cations. With a good feeling for
VIO, you’ll find the rest of the
OS/2 API no more difficult than
gaining knowledge of how and
when to use the different ser-
vices. This will become even
more apparent in the next article
in this series, which switches
from visual output to keyboard
and mouse control, and will
explore the KBD and MOU
subsystems.

USHORT APIENTRY VioGetAnsi ( PUSHORT, HVIO );
USHORT APIENTRY VioSetAnsi ( USHORT, HVIO );
These two functions are used to retrieve or modify the ANSI flag, which controls the
processing of ANSI escape sequences by VioWrtTTY.

USHORT APIENTRY VioGetCp ( USHORT, PUSHORT, HVIO );
USHORT APIENTRY VioSetCp ( USHORT, USHORT, HVIO );
These functions retrieve or set the code page (displayed character set) for the current
screen group.

USHORT APIENTRY VioGetFont ( PVIOFONTINFO, HVIO );
USHORT APIENTRY VioSetFont ( PVIOFONTINFO, HVIO );
These functions retrieve or set the font used to display characters on the screen.

USHORT APIENTRY VioGetState ( PVOID, HVIO );
USHORT APIENTRY VioSetState ( PVOID, HVIO );
These functions retrieve or set the palette-register values, the border color, and the
blink/background intensity switch.

USHORT APIENTRY VioModeUndo ( USHORT, USHORT, USHORT );
USHORT APIENTRY VioModeWait ( USHORT, PUSHORT, USHORT );
Like VioSavRedrawWait, VioModeWait blocks a thread until the video mode is about
to change, and unblocks the thread to restore the video mode. VioModeUndo cancels
a VioModeWait request.

USHORT APIENTRY VioPrtSc ( HVIO );
USHORT APIENTRY VioPrtScToggle ( HVIO );
VioPrtSc performs the same function as the PrintScm key, by copying the contents of
the screen to the printer. VioPrtScToggle enables or disables the printer echo feature.

USHORT APIENTRY VioRegister ( PSZ, PSZ, ULONG, ULONG );
USHORT APIENTRY VioDeRegister ( void );
These two functions allow you to register (or de-register) an alternate video subsystem
within a screen group. You can replace up to two default video functions per call with
VioRegister. VioDeRegister restores the default video sub-system.

USHORT APIENTRY VioSavRedrawUndo ( USHORT, USHORT, USHORT );
This function, like VioModeUndo, cancels a previously issued request to be informed
of a screen switch (via VioSavRedrawWait).

USHORT APIENTRY VioWrtCharStr ( PCH, USHORT, USHORT, USHORT,
HVIO );

This function writes a character string to the screen at the specified row-column
coordinates.

USHORT APIENTRY VioWrtNChar ( PCH, USHORT, USHORT, USHORT,
HVIO );

This function writes a character to the screen a specified number of times.

USHORT APIENTRY VioWrtTTY ( PCH, USHORT, HVIO );
This function writes a character string to the screen at the current cursor position. It
advances the cursor as it writes each character and wraps to the next line if necessary
(including screen scroll). It can process ANSI escape sequences (if the ANSI flag is
ON—see VioSetAnsi), and can process carriage-return and line-feed characters like
printf does.
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Once you have entered your
name at the name prompt, you
can use the Up and Down arrow
keys to change the background
color. You can continue indef-
initely changing the background
until you press Esc. When you
press Esc, the graphics display

makes its way to the center.
Since a chasing frame normally
appears before its predecessor
moves off the top line, it should
be easy to identify. The number
of frames is set in the initializa-
tion function and will vary on
different video hardware.
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39Investigating the Debugging
Registers of the Intel 386
Microprocessor

Marion Hansen and Nick Stuecklen

□he more complex a program and

the microprocessor executing it, the bigger the task

of debugging. In very complex systems, external

debuggers simply cannot do the whole job.

Fortunately, debugging sophisticated software

created for the 386 hardware environment is made easier by the fact

that the Intel® 386™ microprocessor (hereafter referred to as pp)

itself provides a sub-
stantial set of internal
debugg ing  suppor t
features. In this article
we will take a look at
these 386 features and
explore how today’s
state-of-the-art debug-
gers use them.

Figure 1: 386 Debug Registers

1531
Control

Register
Status

Register

23
LEN R/W LEN R/W LEN R/W LEN R/W DR7

DR6

DR5

DR4

DR3

DR2

DR1

DRO

Reserved by Intel Reserved by Intel

Reserved by Intel

Reserved by Intel

Breakpoint 3 Linear Address

Breakpoint 2 Linear Address

Breakpoint 1 Linear Address

Breakpoint 0 Linear Address

In the Past...
In the past, PC-based

debuggers could only
set code breakpoints,
not data access break-
points, and setting those
code breakpoints was
restricted to random
access memory (RAM).

Address
Registers

Reserved by Intel

Data monitoring utilities could be used, but they merely attach

themselves to the timer interrupt and periodically examine and

display the specified region of memory. Typically, a debugger

worked by overwriting the first byte of the specified instruction,

which preempted the ability to set breakpoints in read only memory

(ROM). If you wished to set a breakpoint at an instruction, an old-

style debugger usually saved the first byte of that instruction and

then overwrote the byte with a OCCH opcode (INT 3). When the

microprocessor executed the OCCH opcode, it generated an INT 3,

and the debugger, which was monitoring INT 3, was invoked. The

debugger displayed the breakpointed instruction and the register

state, then waited for the next command.

WlTH ITS SIX DEBUG
REGISTERS, THE 386
MICROPROCESSOR
PROVIDES BUILT-IN

DEBUGGING SUPPORT TO
LET YOU SET BREAKPOINT
ADDRESSES AND DEFINE

WHEN BREAKPOINTS
WILL OCCUR.Marion Hansen is a senior technical writer with Intel’s Personal Computer

Enhancement Operation in Hillsboro, Oregon. Nick Stuecklen is a

senior software engineer at Intel’s PCEO. He has worked with both the

Motorola® 68000 and Intel 386 microprocessors and has developed

on minicomputer, MULTIBUS®, and PC Bus architectures.
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____i ____j ____! ____j Doubleword breakpoint
ii ________H____i

byte word byte

breakpoints are associated with
the memory space only. You
need an ICE to trap I/O space
accesses, or you can use an I/O
permission bitmap in virtual
8086 mode.

You can use a hardware-
assisted debugger such as an
ICE to debug a debugger, but the
only way to debug a 386-based
debugger using the 386 debug
registers is to ensure that the
debugger uses only the INT 3
breakpoint. When triggered, the
386 debug registers generate an
INT 1; therefore, a debugger re-
lying only on INT 1 can debug a
debugger relying only on INT 3.
Further, because you need stable
hardware to use the 386 debug
registers, debugging in harsh,
unknown system environments
is easier with a full-scale ICE or
other hardware-assisted debug-
ger. System developers usually
don’t have the functional key-
board, display, disk, and oper-
ating system that is needed to
load and run a debugger relying
only on the 386 debug registers;
they must rely on an ICE when
debugging preliminary software
and device drivers.

You do, however, need more
than just the 386 debug registers
to create an acceptable software
debugger. Programmers expect
today’s debuggers to provide
recognition of symbolics, fast
disassemblies, and the ability to
handle multiple object module
formats (OMFs). Another desir-
able feature is a Boolean com-
parison layer above the debug
exception handler.

Debuggers that take advan-
tage of the 386 debug features
are on the horizon. Combining
the 386 debug features with
what is available on today’s
debuggers will produce a pow-
erful development tool. In the
meantime, the example at the
end of this article is part of a
working program that exploits
the 386 debug features to create
a useful debugging tool.
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Figure 3: Example Breakpoint Addresses

Trapped

DRO
Address:
0A0001

(length 1)

DR1
Address:
0A0002

(length 1)

DR2
Address:
0B0002

(length 2)

DR3
Address:
OCOOOO

(length 4)

Addresses OAOOOl 0A0002 0B0002 OCOOOO
Trapped (length 1) (length 1) (length 2) (length 4)

OAOOOl 0A0002 0B0001 0C0003
(length 2) (length 2) (length 4) (length 1)

Addresses OAOOOO 0A0003 0B0000 0C0004
Not (length 1) (length 4) (length 2) (length 4)

any of the following conditions
occur:

• an execution of the break-
point instruction

• an execu t ion  of every
instruction (single-stepping)

• an execution of any instruc-
tion at a given address

• a read or write of a byte,
word, or doubleword at any
specified address

• an attempt to change a debug
register

• a task switch to a specific task
(protected mode only)

Some Limitations
Even with all the above capa-

bilities, the 386 debug registers
can’t always do the job of hard-
ware-assisted debuggers. For
example, while many in-circuit
emulators (ICEs) can maintain
breakpoints across processor
resets, a 386 pp reset clears the
debug registers, effectively
destroying any previously set
breakpoints. Another limitation
is that many ICEs can set break-
points on I/O space accesses, but
the 386 debug registers can’t
distinguish between memory
and I/O space accesses. All data

Today...
Fortunately the introduction

of the 386 pp changed all that.
With its six debug registers, the
386 pp provides built-in
debugging support to let you set
breakpoint addresses and define
when breakpoints will occur.
The four debug address registers
are individually programmable
and individually enabled or
disabled through the debug
control register. The debug
status register maintains debug
status information.

In addition to supporting the
usual break on instructions, the
386 pp also supports data access
breakpoints. Data breakpoints
are a very useful debugging tool
(besides being an exceptional
capability for a microproces-
sor). A data breakpoint occurs at
the exact moment that data
residing at a particular address is
read or written. Using data
breakpoints, you can imme-
diately locate the instruction
responsible for overwriting a
data structure. The 386 pp lets
you set breakpoint addresses in
ROM as well as RAM. You can
set a 386 debug exception when
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Figure 4: The Seven interrupt 1 Breakpoint Conditions _________F

1 Status Register Flags Condition

BS=1 Single-step trap

B0=l AND (GE0=l OR LE0=l) Breakpoint DRO, LENO, R/WO

Bl=l AND (GE1=1 OR LE1=1) Breakpoint DR1, LEN1, R/Wl

B2=l AND (GE2=1 OR LE2=1) Breakpoint DR2, LEN2, R/W2

B3=l AND (GE3=1 OR LE3=1) Breakpoint DR3, LEN3, R/W3

BD=1 Debug registers not available
ICE-386 using debug registers
(protected mode only)

BT=1 Task switch (protected mode only)

41Built-in Features
The 386 pp provides several

built-in debugging features:

• Four breakpoints. You can
specify four addresses that
the CPU will automatically
monitor.

• Arm or disarm the break-
points. You can selectively
enable and disable various
debug conditions that are asso-
ciated with the four debug
addresses.

•Data  and ins truc t ion
breakpoints. You can set
breakpoints on data accesses
as well as on instruction exe-
cutions.

• Singlestepping. You can
step through the program one
instruction at a time.

Let’s look at how the 386
debug features are implemented.
Along the way, we will develop
some debugger software that
will amplify these features.

Debug Registers
The 386 pp has six registers to

control debug features. Figure 1
shows the format of the debug
registers. You can access them
by using variants of the MOV
instruction. A debug register can
be either the source or the desti-
nation operand. In protected
mode, the MOV instructions
that access the debug registers
can only be executed at privilege
level zero. Trying to read or
write the debug registers from
any other privilege level causes
a general protection exception.
Under a protected mode oper-
ating system (such as OS/2 or
XENIX® systems), the debug
registers are considered privi-
leged resources, and only priv-
ileged tasks can access them.

Debug address registers
(DR0-DR3). You can set a
breakpoint address in each of the
four debug address registers.
Each register contains a linear
address used to identify a break-

point. (In contrast, addresses are
presented as a segment/offset
pair in real mode.)

Debug control register
(DR7). The debug control regis-
ter lets you define, enable, and
disable debug conditions. It
specifies the conditions under
which the 386 recognizes a
breakpoint, the breakpoint type
(local or global), and the break-
point length field. The low order
8 bits of DR7 enable or disable
the four breakpoints. Each
breakpoint has 2 enable bits. The
L bit enables local breakpoints,
and the G bit enables global
ones. The real mode debugging
program shown later in this arti-
cle sets and clears both bits.

For each address in register
DRO through DR3, the corre-
sponding fields R/WO through
R/W3 (in register DR7) specify
the type of action that can cause
a breakpoint. The 386 interprets
these bits as follows:

Bits Meaning
00 break on instruction

execution only
01 break on data writes

only
10 undefined
11 break on data reads and

writes but not on
instruction fetches

The breakpoint length field
(LENn) is associated primarily
with data breakpoints. The

THE DEBUG CONTROL
REGISTER LETS YOU
DEFINE, ENABLE, AND

DISABLE DEBUG
CONDITIONS. IT SPECIFIES
THE CONDITIONS UNDER

WHICH THE 386
RECOGNIZES A

BREAKPOINT, THE
BREAKPOINT TYPE (LOCAL

OR GLOBAL), AND THE
BREAKPOINT LENGTH

FIELD.
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Figure 6: Debugging Assistant Common Code
length of a data breakpoint can
be a byte, a word, or a double-
word. Specifying only the
starting address of a data item is
not enough to match a break-
point condition because data
items can be of three different
lengths (8, 16, and 32 bits). The
length field adds flexibility by
selecting a range of address
accesses which can trigger a
breakpoint. You can specify the
following lengths:

Bits Meaning
00 1-byte length
01 2-byte length (word)
10 undefined
11 4-byte length

(doubleword)

Because instruction break-
points should uniquely specify
the byte-granular starting
address of the intended instruc-
tion, instruction breakpoints
always specify a length field of 1
byte. If RWn is 00—an instruc-
tion execution breakpoint—
LEN« should also be 00 (1 byte).
Any other length is undefined.

When the LE (local) or GE
(global) bit is set, the 386 |ip
slows execution so data break-
points can be reported on the
precise instruction that caused
them. Keep in mind that while
an instruction execution break-
point occurs before the specified
instruction is executed, a data
access (read or write) breakpoint
occurs after the specified data is
read or written.

Debug status register
(DR6). The debugger uses the
debug status register to deter-
mine what debug conditions
have occurred. The 386 |ip sets
status bits, and the debugger
reads them. When the micropro-
cessor detects a debug excep-
tion, it sets one or more of the
status register’s 4 low-order
bits, B0 through B3, before
entering the debug exception
handler. Bn is set if the condition
described in the address regis-
ters (DR/?) and the control regis-
ter (LEN/i and R/W«) occurs.

42 NAME ISR

EXTRN display_and_edit_regs:FAR

CODE SEGMENT PUBLIC 'CODE'
ASSUME CS:CODE

PUBLIC INT1_ISR, INT9_ISR, SYSREQ_ISR, ISR_common
PUBLIC orig_INTl_ISR_ptr, orig_INT3_ISR__ptr, orig_SYSREQ_ISR__ptr
PUBLIC orig_INT9_ISR_jptr

$EJECT

This Assembly language module is composed of two
interrupt service routines (ISRs) and another block of
code shared between the two ISRs.

The module is used to either awaken a register
display/edit routine as a result of an 80386 debug
exception or to awaken the display/edit routine
as a result of a user request to "pop-it-up" (via the
SYSREQ key).

The first ISR, known as INT1_ISR, services the 80386 debug
exception interrupt and then CALLS the common block of
code, ISR_common.

ISR_common copies the current 80386 register image into a
large data structure and then CALLS the register
display/edit routine (written in a higher-level language).

The second ISR, known as SYSREQ_ISR, is chained into the
BIOS INT 15h interrupt, and it merely awaits a SYSREQ key
press (passing any other INT 15h requests to the original
INT 15h handler) before calling ISR__common.

The display/edit routine (not shown in this article, but
written in PL/M-86) allows the user to examine and/or
modify, by reading/altering the aforementioned register
image data structure, the normal 80386 registers (in full
32-bit form), as well as the debug registers.

$EJECT

Define structure/data area used to hold copies of the
register images as they exist when the INT 1 ISR is
entered.

W A R N I N G  :
The register ordering is F I X E D ! ! !  The
display_and_edit_regs subroutine assumes a predefined
ordering.

A L S O :
You probably noticed that each table entry is 32 bits
long, even though some registers are actually only 16
bits long (like CS). The uniform entry size makes
indexing into the table much easier on the display
routines. If a register is only 16 bits wide, the
high order 16 bits of its register image from the
following structure are wasted. This is not a problem
since the program is not so large that such wastage is
critical.

ISR_reg
ISR_DRO

ISR_DR1

ISRJDR2

ISR_DR3

ISR_DR6

ISRJDR7

ISR_CS

ISR_EIP

ISR_SS

ISR ESP

« LABELDWORD
0 ; This register is 32 bits wide
0
0 ; This register is 32 bits wide
0
0 ; This register is 32 bits wide
0
0 ; This register is 32 bits wide
0
0 ; This register is 32 bits wide
0
0 ; This register is 32 bits wide
0
0 ; This register is 16 bits wide
? ; (these 16 bits unused)
0 ; This register is 32 bits wide
0
0 ; This register is 16 bits wide
? ; (these 16 bits unused)
0 ; This register is 32 bits wide
0
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Figure 6

The BS bit, associated with
the TF (trap flag) bit of the 386
EFLAGS register, is set if the
debug handler is entered, since a
single-step exception occurred.
The single-step trap is the high-
est-priority debug exception.
When BS is set, any of the other
debug status bits may also have
been set by the 386 (Lip. This
means that a single-step trap can
occur at the same time an
instruction or data breakpoint
occurs. The BT and BS bits are
used only when the micropro-
cessor is in protected mode.

The BT bit is associated with
the T bit (debug trap bit) of the
task state segment, or TSS. The
TSS is a data structure defined
by the 386 system architecture;
it is available only in protected
mode. Each task has its own
TSS, which holds the state of the
task’s virtual processor. The 386
(Lip sets the BT bit before enter-
ing the debug handler if a task
switch has occurred and if the T
bit of the new TSS is set. There
is no corresponding bit in DR7
that enables and disables this
trap; the T bit of the TSS is the
only enabling bit.

The ICE-386 is Intel’s in-cir-
cuit emulator for the 386 pp.
When the ICE-386 is attached, it
has priority over the 386 debug-
ger. The BD bit is set if the next
instruction will read or write one
of the debug registers and ICE-
386 is also using the debug
registers.

The 386 pp only clears the
bits of DR6 when the micropro-
cessor is reset. To avoid confu-
sion in identifying the cause of
the next debug exception, the
debug handler should move
zeros to DR6 immediately
before returning.

Setting Breakpoints
Each of the four breakpoints

is defined by its linear address
(DR«) and its length (LENrc).
The LEN field lets you specify a
1-, 2-, or 4-byte field. The 386

Thia register is 16 bits wide

(these 16 bits unused)

This register is 32 bits wide

This register is 16 bits wide

; (these 16 bits unused)

This register is 32 bits wide

This register is 32 bits wide

This register is 32 bits wide

This register is 32 bits wide

This register is 32 bits wide

This register is 32 bits wide

This register is 16 bits wide

; (these 16 bits unused)

This register is 16 bits wide

; (these 16 bits unused)

This register is 32 bits wide

This register is 32 bits wide

ISRJDS

ISR_ESI

ISR_ES

ISR_EDI

ISR_EAX

ISR_EBX

ISRJECX

ISR_EDX

ISR_EBP

ISR_FS

ISR_GS

ISR_CRO

ISR EFLAGS

; The following space is alloc
ated for the

; display_and_edit_regs routin
e but is not used by the

; ISRs .

drO_segment

drO_offset

drO_compare_value

dr0_compare_enable

drl_segment

drl_offset

drl_compare_va lue

drl_co®pare_enable

dr2_segment

dr2_offset

dr2_coxnpare_value

dr2_compare_enable

dr3_segment

dr3_offset

dr3_conpare_value

dr3_compare_enable

drOJboolean

drl_boolean

dr2_boolean

dr3_boolean

$EJECT

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

g
g

; Allocate storage for INT 3 f
lag — this flag is

; set /reset by the register di
splay routine and

; indicates whether the ISR_co
mmon code should trigger

; an INT 3 shortly before RETin
g.

INT3_flag DB ?

; Allocate storage for the req
uest flag — we set this

; flag to indicate to the regi
ster display routine

; whether we're calling it fro
m SYSREQ (pop-up request)

; or INTI (debug exception has
 occurred).

request__flag DB ?

INTl_request EQU 0

SYSREQ_request EQU 1

; Define the values necessary 
for processing SYSREQ key

; presses.

EQU 08500h

EQU 064h

EQU 002h

EQU OAEh

EQU 02 Oh

EQU 020h

SYSREQ_key_pressed

keyboard_status_port

input_buffer_full

enable_keyboard

PIC
EOI
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pp requires that 2-byte fields be
aligned on word boundaries
(addresses that are multiples of
two), and 4-byte fields must be
aligned on doubleword bound-
ar ies  ( add re s se s  that are
multiples of four). You will get
unexpected results if code or
data breakpoint addresses are
not properly aligned.

You can set a data breakpoint
for a misaligned field longer
than 1 byte by using two or more
debug address registers to hold
the entire address. Each entry
must be properly aligned, and
the entries must span the length
of the field. For example, when
setting three breakpoints for a
doubleword address that starts
on an odd-byte boundary, the
first address identifies the first
byte of the doubleword, the
second one identifies the next
two bytes, and the third identi-
fies the last byte. Figure 2 shows
you how to align breakpoint
addresses for the address of a
doubleword starting on an odd-
byte boundary.

A memory access triggers a
data read or write breakpoint
when it occurs within a defined
breakpoint field (as determined
by a breakpoint address register
and its corresponding LEN
field). Figure 3 contains exam-
ples showing when breakpoints
will and will not occur.

In s t ruc t i on  b reakpo in t
addresses are always specified
as 1 byte (LEN=00). Other val-
ues for instruction breakpoint
addresses are undefined. The
386 recognizes an instruction
breakpoint only when the break-
point address points to the first
byte of an instruction. There-
fore, if the instruction has pre-
fixes, then the breakpoint
address must point to the first
prefix byte.

Debug Exceptions
Breakpoints set on instruc-

tions cause faults; all other
debug conditions cause traps.

; ISR local stack definition...

DW 512 DUP (0)
ISR_stack LABEL WORD

Where we store the original SS:SP before we install the
local stack.

orig_ISR_stack_ptr DW ?
DW ?

; Storage for copy of local code segment value.

local_data_seg DW CODE

; Define storage for the original interrupt service
; routine addresses for the interrupts onto which we'll
; be chaining or installing ourselves.

orig_INTl_ISR_ptr

orig_INT3_ISR_ptr

orig_INT9_ISR_ptr

orig_SYSREQ_ISR_ptr ss
ss

ss
ss

; The following instruction prefix is 80386-specific.
; It identifies the subsequent instruction as one that
; uses a 32 bit operand size. This prefix allows us to
; create 80386 instructions using an 80286 assembler.

operand_size_32_prefix EQU 066H

Define stack frame that exists at the time the
ISR_common is CALLed.

ISR_stack_parm STRUC
ISR_RTNA DW Return address (to INT1_ISR

or SYSREQ_ISR)
old_IP DW ? ; CS:IP of code which was in

progress at time
old_CS DW ? ; the debug exception

occurred
old_FLAGS

ISR_stack_parm

DW

ENDS

? ; State of the FLAGS at time
of exception

; Define flag that can be used to determine whether or
; not we're already servicing an interrupt request (in
; other words, are we being reentered ? )

ISR_in_progress DB FALSE
FALSE EQU 0
TRUE EQU OFFh

$EJECT

; INTI (80386 Debug Exception) Handler

; This interrupt service routine can be entered as a
; result of one of the following conditions:

; 1 - instruction execution breakpoint
; 2 - data access breakpoint

MMJ.’HUUJ-liJ
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(Faults break before executing
the instruction at the specified
address. Traps report a data
access breakpoint after execut-
ing the instruction that accesses
the given memory item.) The
debug exception can report
faults and traps at the same time.
The following describes the four
classes of debug exceptions.

Ins truc t ion  execut ion
breakpoint. An instruction
execution breakpoint is a fault,
so the 386 pp reports an instruc-
tion execution breakpoint
before it executes the instruction
at the given address.

Data access breakpoint. A
data access breakpoint ex-
ception is a trap. That is, the pro-
cessor reports a data access
breakpoint after executing the
instruction that accesses the
given memory item.

When using data breakpoints,
you should set the DR7’s LE bit,
GE bit, or both. If either LE or
GE is set, any data breakpoint
trap is reported exactly after
completion of the instruction
that accessed the specified
memory item. This exact report-
ing is accomplished by forcing
the 386 execution unit to wait for
completion of data operand
transfers before beginning exe-
cution of the next instruction. If
neither GE nor LE is set, data
breakpoints may not be reported
until one instruction after the
data is accessed or they may not
be reported at all. This is
because the 386 pp normally
overlaps instruction execution
with memory transfers to such a
degree that execution of the next
instruction may begin before
memory transfers for the pre-
vious instruction are completed.

If a debugger is creating a data
write breakpoint, it should save
the original data contents before
setting the breakpoint. Because
data breakpoints are traps, a
write into a breakpoint location
is completed before the trap con-
dition is reported. The handler

453 - general detect fault
- single step
- task switch breakpoint5

that it is not being reentered,first ensuresThe ISR
and then CALLs ISR_common.

PROC FARINT1_ISR

Jump around header fieldINTl_start
'DAGGER'

JMP
DB

determine if
installed

the ISR is already

INTl_start:
PUSHF
CMP

;Save FLAGS
CS:ISR_in_progress,TRUE

; reentered?
not_being_reentered

; YES, recover
; put interrupts back
; on, and leave

; Are we being

; NO
FLAGS,

JNE
POPF
STI
IRET

Mark "in progress" flag so that we can't be reentered

not_being_reentered:
CS:ISR_in_progress, TRUE ;Show "in progress"
CS:request_flag,INTl_request ;Set flag i

;indicating that
; this INT occurred as a result of
; an 80386 debug exception
;Recover FLAGS

MOV
MOV

POPF

;CALL common ISR code
; and leave

CALL
IRET

ISR_common

INT1_ISR ENDP

$EJECT

SYSREQ (System Request Key) Handler

This interrupt service routine can be entered
as a result of one of the following conditions:

SYSREQ key pressed OR some other BIOS INT 15
request occurred

We will only CALL ISR_common if the ISR was entered
as a result of a userrequest to pop-up the register
display/edit screen. Otherwise, we simply chain onto the
old BIOS INT 15 ISR.

SYSREQ_ISR PROC FAR

PUSHF ; Save FLAGS
CMP AX, SYSREQ_key_pressed ; Was the INT for

; SYSREQ key ?
JE process_SYSREQ ; SYSREQ key ?YES —

; do local processing
chain_to_original_ISR:

POPF ; NO, recover FLAGS

STI ; Interrupts back on
JMP DWORD PTR CS:orig_SYSREQ_ISRjptr ; Chain on to

; original
; SYSREQ ISR

process_SYSREQ:
PUSH AX ; Save AX

MOV AL,EOI
OUT PIC,AL ; Issue End-of-Interrupt to PIC

await_keybd_controller:
IN AL,keyboard_status_port ; Get keyboard

; controller status
TEST AL, input_buffer_full ; Keyboard controller

; ready to accept
; command?

JNZ await_keybd_controller ; NO
MOV AL,enable_keyboard ; YES
OUT keyboard_status_port,AL ; Re-enable keyboard

POP AX ; recover AX

POPF ; recover FLAGS,

; IF we're being reentered, simply chain to

l»l»lilHli l l l l 111  ■
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Figure 6
can report the saved (original)
value after the breakpoint has
been triggered. The data in the
debug registers can be used to
address the new value written by
the instruction that triggered the
breakpoint.

Single-step trap. This debug
condition occurs at the end of an
instruction if the trap flag (TF)
of the flag’s register held the
value 1 at the beginning of that
instruction. Note that the excep-
tion does not occur at the end of
an instruction that sets TF. For
example, if POPF is used to set
TF, a single-step trap does not
occur until after the instruction
that follows POPF.

The interrupt priorities in
hardware guarantee that if an
external interrupt occurs, single
stepping stops. When an exter-
nal and a single-step interrupt
occur together, the single-step
interrupt is processed first. This
clears the TF bit. After saving
the return address or the switch
tasks, the external interrupt
input is examined before the
first instruction of the single-
step handler executes. If the
external interrupt js still pend-
ing, it is then serviced. The
external interrupt handler is not
single stepped. In order to single
step an external interrupt
handler, single step an INT n
instruction that refers to the
interrupt handler.

Task switch breakpoint. In
protected mode, a breakpoint
occurs after switching to a new
task if the new TSS’s T bit is set.
The breakpoint occurs after
control passes to the new task
but before the first instruction is
executed. The exception han-
dler can detect a task switch by
examining the BT bit of the
debug status register (DR6).

Interrupts
Both the 386 and earlier

microprocessors have two in-
terrupt vectors dedicated to de-
bugging. Interrupt 1 is reserved

46
; original ISR.

PUSHF ; Save flags
CMP CS:ISR_in_progress,TRUE ; Are we being

; re-entered?
JNE SYSREQ_not_being_reentered ;NO
JMP chain_to_original_ISR ;Chain to original ISR

ELSE: mark "in progress" flag so that we can't
be reentered

SYSREQ_not_being_reentered:
MOV CS:ISR_in_progress, TRUE /Show "in progress"
MOV CS:request_flag, SYSREQ_request

;Set flag indicating that this
; INT occurred as a result of
; a user request to pop-up
; the display/edit routine

POPF ;Recover FLAGS

CALL ISR_common ; CALL common ISR code,
JMP DWORD PTR CS:orig_SYSREQ_ISR_ptr

; and then JMP to
; original INT 15h ISR

SYSREQ-ISR ENDP

$EJECT

INT9_ISR PROC FAR

JMP DWORD PTR CS:orig_INT9_ISR_ptr

INT9_ISR ENDP

$EJECT

ISR_common PROC NEAR

Common interrupt service routine code (shared by
INT1_ISR and SYSREQ_ISR)

This common block of code simply copies the current
register state into the large data structure described
earlier. The address of the data structure is passed to
the display/edit registers routine, which is a
higher-level language subroutine that allows the user
to edit the normal 80386 registers, as well as edit
the debug registers.

STI ;Interrupts back on

Put EBP into data structure.
Put EAX into data structure.
Then get EFLAGS into data structure via EAX. FLAGS
(low word of EFLAGS) were pushed onto the stack by the
CPU when the INT occurred. We'll just OR the FLAGS
(low 16 bits of EFLAGS) from the stack with the high
word of current EFLAGS.

DB operand_size_32_jprefix
MOV CS:ISR_EBP, BP ; EBP into global structure

DB operand_size_32_prefix
MOV BP,SP ; EBP = current ESP

DB operand_size_32_jprefix
MOV CS:ISR_EAX,AX ; EAX into global structure

DB operand_size_32_prefix
PUSHF ; PUSH EFLAGS
DB operand_size_32 prefix
POP AX ' ; POP EAX (high word of EAX

; has high word of EFLAGS)
MOV AX,[BP].old-FLAGS; Get FLAGS from stack into

; low word of EAX
DB operand_size_32_prefix
MOV CS:ISR_EFLAGS, AX; EFLAGS into global

; structure

$EJECT

; Get CS:IP from stack (placed there by 80386 when
; INT 1 occurred).
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MOV AX, [BP] .old_CS Get CS from stack

MOV
DB

CS:ISR_CS,AX

operand—size_32_prefix
CS into global structure

SUB AX, AX Clear high word of EAX

MOV

DB

AX, [BP] .old_IP
; low word of

operand_size_32_prefix

Get IP from stack into

EAX

MOV CS:ISR_EIP,AX ;EIP into global structure

Copy the rest of the registers into the data structure.

MOV

DB

CS:ISR_DS,DS

operand—size_32—prefix

/ DS

MOV CS:ISR_ESI , SI ; ESI

MOV

DB

CS:ISR_ES,ES

ope rand_size_32_pr efix

; ES

MOV

DB

CS:ISR_EDI, DI

operand_size_32_prefix

; EDI

MOV

DB

CS: ISR_EBX,BX

operand_size_32__prefix

; EBX

MOV

DB

CS:ISR_ECX, CX

operand—size_32_j>refix

; ECX

MOV CS:ISR_EDX, DX ; EDX

DB
MOV

08Ch, OEOh

CS:ISR_FS,AX

; FS

DB
MOV

08Ch, 0E8h

CS:ISR_GS,AX

; GS

DB
DB
MOV

OOFh, 020h, OCOh

ope rand_size_32_j>refix

CS :ISR-CRO,AX

; CR0

DB
DB
MOV

OFh, 02 Ih, OCOh

operand_si ze_ 32_ pref ix

CS: ISR_DRO,AX

; DR0

DB
DB
MOV

OFh, 02Ih, 0C8h

operand_size_32_prefix

CS:ISR—DR1,AX

; DR1

DB
DB
MOV

OFh, 02Ih, ODOh

operand—size_32_prefix

CS:ISR_DR2,AX

; DR2

DB
DB
MOV

OFh, 02 Ih, 0D8h

operand_size_32_prefix

CS:ISR_DR3,AX

; DR3

DB
DB
MOV

OFh, 021h, OFOh

operand_size_32_prefix

CS :ISR_DR6,AX

; DR6

DB
DB
MOV

OFh, 02Ih, 0F8h

operand—size_32_prefix

CS:ISR_DR7,AX

; DR7

for the single-step instruction
trap, interrupt 3 for instruction
breakpoints. In addition, the 386
|ip generates an interrupt 1 on
any debug register trigger.

Interrupt 1. The handler for
interrupt 1 is usually a debugger
or part of a debugging system.
Figure 4 shows the seven break-
point conditions that can cause
an interrupt 1. The debugger can
check flags in DR6 and DR7 to
determine what condition
caused the exception and what
other conditions might have
occurred.

Interrupt 3. This exception is
caused by execution of the
breakpoint instruction INT 3.
Typically, a pre-386 debugger
prepared a breakpoint by substi-
tuting the opcode of the 1-byte
breakpoint instruction for the
first opcode byte of the instruc-
tion to be trapped.

Prior to the 386 machine,
microprocessors used the break-
point exception extensively for
trapping execution of specific
instructions. The 386 pp solves
this need more conveniently by
using the debug registers and
interrupt 1. However, the break-
point exception is still useful for
debugging debuggers because
the breakpoint exception can
vector to an exception handler
that is different from that used
by the debugger. The breakpoint
exception can also be useful
when you need to set more
breakpoints than allowed by the
four debug registers.

Sample Debugger
Program

You don’t need to scrap your
old-style debugger to take
advantage of the 386’s built-in
debugging features. With a little
help from a friendly debugging
assistant (such as the working
program fragment shown later
in this article), you can continue
to use your current debugger. By
enabling or disabling data
breakpoints with a pop-up rou-

47

$EJECT

Save original SS:SP into save area a
nd also into the

global structure and then create a n
ew SS:SP so that

we can CALL a stack-intensive P/LM-8
6 routine.

DB operand—size_32_prefix

ADD BP, SIZE ISR_stack_parm

/Adjust EBP (which is a copy

; of original ESP) so that it

; reflects original state of

; ESP at the time INT occurred

DB operand—size_32_prefix

MOV CS:ISRJESP, BP ;ESP into global structure

MOV CS:ISR_SS,SS ;SS into global structure

MOV CS:orig_ISR_ st ack_ pt r, SP

/Save SP into local storage

MOV CS :orig_ISR_stack_ptr + 2,SS

/Save SS into local storage
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CLI ;Clear INTs while working on stack regs
MOV SS,CS:local_data_seg ;New SS
LEA SP,ISR_stack ;New SP
STI ;Restore INTs

Figure 6
tine, the debugging assistant
shown supplements the setting
of instruction breakpoints by
old-style debuggers. You still
have all the benefits of your
older debugger (symbolics and
disassemblies, for example)
plus the powerful built-in
debugging capabilities of the
386 |ip.

The 386-based debugging
assistant runs in the back-
ground as an adjunct to a tradi-
tional, pre-386 debugger. The
debugg ing  a s s i s t an t  is a
terminate-and-stay-resident
(TSR) program that pops up
either when you press the
SYSREQ key or when a debug
exception occurs. The pop-up
screen describes the 386
registers and identifies which of
the four individually program-
mable breakpoints occurred.

Our debugging assistant has
several features built into it. A
human interface displays all the
registers you’re interested in
and lets you easily enter break-
point addresses, enable/disable
breakpoints, and define break-
point conditions. Figure 5 shows
a model of this screen, which is
divided into the following five
option fields:

• BREAKPOINT contains the
four 386 debug registers and
their options.

• COMPARE shows the Bool-
ean comparison options that
are available.

• SPECIAL REGS contains
the 386 EFLAGS register in
its hexadecimal representa-
tion, the debug control regis-
ter (DR7), and the debug
status register (DR6).

•REGISTER SET displays
the values in the most fre-
quently referenced 386
registers.

•EFLAGS p re sen t s  the
EFLAGS register decoded
into an English format.

You can change most of the
values displayed on the screen

48
; CALL the PL/M-86 procedure responsible for displaying
; and processing the information we've just put into the
; data structure. The PL/M routine will read and display
; the register state (as shown in the data structure),
; and will allow the user to indirectly modify the
; registers (including the debug registers) via edits
; to that same structure. When the display/edit routine
; RETurns, we'll copy the register image back into the
; 80386 registers.

AX, ISR_register__image ; Pass the address of
CS ; the register image
AX ; as pointer on stack
AX,INT3_flag ; Pass the addrs of INT3 flag
CS ; so that display/edit routine
AX ; can set/reset as user desires
JkL,CS:request_flag ; Pass request type flag so
AX ; that display/edit routine

; can determine whether it was
; called as result of an INT 1
; or SYSREQ

display and_edit_regs ;CALL P/LM-86 PROCedureCALL

$EJECT

Transfer the edited register images from the global
structure back into the 80386 registers.

DB operand_size_32jprefix
MOV BX,CS:ISR_EBX EBX

DB operand_size_32_prefix
MOV CX,CS:ISR_ECX ECX

DB operand_sixe_32_prefix
MOV DX, CS:ISR_EDX EDX

DB operand_size_32_prefix
MOV SI,CS:ISR_ESI ESI

DB operand_size_32_prefix
MOV DI, CS:ISR_EDI EDI

DB operand_size_32_jprefix
MOV BP, CS:ISR_EBP EBP

MOV ES,CS:ISR_ES ES

MOV DS,CS:ISR_DS DS

MOV AX,CS:ISR_FS
DB 08Eh, OEOh MOV FS,JKX

MOV AX,CS:ISR_GS
DB 08Eh, 0E8h MOV GS,AX

DB operand_size_32jprefix
MOV AX,CS:ISR_CR0
DB OOFh, 022h, OCOh MOV CR0,EAX

DB operand_size_32_prefix
MOV AX,CS:ISR_DR0
DB OOFh,023h, OCOh MOV DR0,EAX

DB operand_size_32_prefix
MOV AX,CS:ISR_DR1
DB OOFh, 023h,0C8h MOV DR1,EAX

DB operand_size_32_jprefix
MOV AX,CS:ISR_DR2
DB OOFh, 023h, ODOh MOV DR2,EAX

DB operand_size_32_prefix
MOV AX,CS:ISR_DR3
DB OOFh, 023h,0D8h MOV DR3,EAX

; Clear out DR6 — all bits in that reg must be reset
; after each INT 1 (ignore whatever is currently sitting
; in the DR6 register image).
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DB
SUB
DB

operand_size_32_prefix

AX,AX ; SUB EAX, EAX

OOFh,023h, OFOh ; MOV DR6,EAX

DB
MOV
DB

operand size 32_jprefix

AX,CS:ISR_DR7 ; MOV EAX,CS:ISR_DR7

OOFh,023h,0F8h ;M0VDR7,EAX

DB
MOV
DB
PUSH
DB
POPF

operand_size_32_prefix

AX,CS:ISR_EFLAGS ; MOV EAX,CS:ISR_EFLAGS

operand_size_32_prefix

AX ; PUSH EAX

operand_size_32_prefix
; POP EFLAGS

DB
MOV

operand_size_32_prefix

AX,CS:ISR__EAX ; MOV EAX,CS:ISR_EAX

$EJECT

; Clean up stack.

CLI
MOV
MOV
MOV

; Clear INTs while working on st
ack

SS,CS:orig__ISR_stackjptr + 2; Get original SS

SP,CS:orig_ISR_stack_ptr ; Get original SP

CS:ISR_in_progress,FALSE ; Show "no longer
; in progress"

; Issue an INT3 (old-style debug
ger interrupt) if user

; so directed. In that fashion, 
we can trigger a "real"

; debugger (presumably one that 
will allow us to

; examine/modify memory and disp
lay symbol information).

; We can merely get rid of the l
ocal caller's return

; address (SYSREQ_ISR or INT1_IS
R) and then "JMP"

; directly to the original INT3 
ISR. Since our code was

; entered as a result of an INTI
, the stack will

; already be set up such that th
e INT3 routine has only

; to execute an IRET.

PUSHF
CMP
JZ
POPF
ADD

PUSH
MOV
INC

POP
STI
JMP

CS:INT3_flag,0 ; Did user want an INT3?

ISR_common_RET ; NO
; YES, recover flags,

SP,2 ; pop-off the local

; caller's return address

BP ; Save reg

BP,SP ; Get stack ptr

WORD PTR [BP + 2] ; Adjust IP on stack such

; that the INT3 handler

; can DEC to adjust for

; the "INT3"

BP ; Recover reg
; Put interrupts back on,

DWORD PTR CS:orig_INT3_ISR__ptr
; and then "JMP" to the

; original INT3 ISR

ISR_common_RET:
POPF ; Recover flags

STI ; Interrupts back on

RET

ISR_common ENDP

CODE ENDS
END

by either editing or toggling
each respective field.

A Boolean comparison layer
decides if the exception meets
the criteria you specified. The
debugging assistant has Bool-
ean comparison logic that is
armed and disarmed separately
by toggling the switch (sw) field
in COMPARE. You can also
toggle the Boolean (bool) field
in COMPARE between:

< less than
< = less than or equal to
= equal to
< > not equal to
> greater than
> = greater than or equal to

The value to be used in the
comparison logic is specified by
editing the value field in
COMPARE.

An interrupt service routine
handles exceptions. The debug-
ging assistant program has two
interrupt service routines
(ISRs). One ISR handles the
SYSREQ key and the other
handles debug exception inter-
rupts. Part of the code in Figure 6

contains an interrupt service
routine.

Common code is called by the
interrupt service routines. In the
debugging assistant program,
both ISRs call a common block
of code that copies the 386 reg-
isters into a large data structure.
The common code then passes
the address of the data structure
to the high-level language pro-
gram that controls the human
interface.

After the registers are modi-
fied (through the human inter-
face), the high-level language
program returns control to the
common code. The common
code then copies the edited reg-
ister images back into the 386
registers and “goes to sleep”
until the next debug exception or
until the SYSREQ key is
pressed. Figure 6 contains the
common code, written in assem-
bly language.

49

Some of the assembly lan-
guage mnemonics may be unfa-
miliar. Because of the absence
of 386 assemblers, we hand-
assembled certain 386-specific
instructions. Most of them were
relatively easy to code because
they only needed a prefix byte.
The prefix byte specifies that the
following instruction will use
32-bit operands, rather than 16-
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BREAKPOINT
sw segn o f f s e t  type  l eng th

COMPARE
sw bool  va lue

SPECIAL REGS

DR? 00000400

FFFF0FF0DR6

EFLAGS 00001869

E T E FLAGSREGISTER S

Fl=he lp  F3=INT3 F10=ex i t  F9=app s c r een  F5= togg le  *-<rubout>=edi t

bit pre-386 instructions. For
example, inserting the prefix
byte 066h ahead of
mov ax,bx

forms an instruction which the
386 pp interprets as:
mov eax,ebx

Figure 7 shows the flow of the
debugging assistant program.

A thorough understanding of
the 386 debug support features
presented in this article will
provide a good starting point for
tackling difficult debugging
chores. It makes it possible to
build special debugging utilities
that focus on specific problems
that might not be handled by a
generic debugger. We are not, of
course, suggesting that the
reader should actually build a
debugger. But under certain cir-
cumstances a debugging assis-
tant such as the one presented
here will decrease debugging
time plus give you the satisfac-
tion of both fully exploiting the
debugging capabilities and
better understanding the internal
workings of the most advanced
microprocessor on the market.U

50 ■ 0000 00000000 code byte

0000 00000000 code byte

0000 00000000 code byte

0000 00000000 code byte

= 00000000

= 00000000

= 00000000

= 00000000

ove r f  low no aux ca r ry

forward odd pa r i t y

pos i t  ive car ry

ze ro d i sab l e  i n t s

CS:EIP 000B 00001372 EAX 00003020 EBP 00000000

SS:ESP 185A 000022ED EBX 00008 3 F3 FS 0000

DS:ESI 185A 00000000 ECX 00000000 GS 0000

ES:EDI 185A 00000000 EDX 00001A31 CR0 FFFFFFF1

▲ The debugging asssistant screen displays the 386
microprocessor registers, with the four debug registers gathered in the top left
quadrant of the screen, and allows you to set breakpoint addresses and
define breakpoint conditions.

: Debugging Assistant Program Flow

386 Debug Exception SYSREQ key press

INT 15 ISRISR

ISR_common

boolean comparison logic
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51Strategies for Building and
Using OS/2 Run-Time
Dynamic-Link Libraries

Ross M. Greenberg

You are in an OS/2 naze of twisty
 little passages, all alike.

There is a dwarf here.

There is an ax here.

> TAKE AX
Ax taken. The dwarf growls and gu

ards his cache of 256Kb chips.

> THROW AX
You have no ax. The dwarf smirks 

menacingly at your empty

memory expansion card.

> INVENTORY
You are carrying an ax and a memo

ry expansion card.

> THROW AX
You have no ax. The dwarf chuckle

s and takes out a static

discharge gun.
> LOAD DEBUG DLL

(loading new DLL ... DLL loaded)

The dwarf leers at you and takes 
aim.

> THROW AX
DBG.inu_cnt = 2
DBG : inv_tabI0] = 'ax' / strcmp ? = 0

DBG : inv_tabll] = 'memory expansion ca
rd' / strcmp ?= 0

DBG:End of List - Failed

You have no ax. The dwarf times 
it well and fires while you are

caught thrashing as you swap to 
disk. _

our process has died.
Later, when you run the BACKTRACE function in your debug DLL,

you find that you TOOK the ax with a stmcmp but tried to THROW with

a strcmp. And with a quick correction the bug is history.

A Debug DLL
What is a debug DLL anyway, and how can you create one?

The Dynamic-Link Library (DLL) capabilities of OS/2 systems actually come in two

“flavors.” The first, called static linking, was described fully in “Design Concepts and

Considerations in Building an OS/2 Dynamic-Link Library,” MSJ (Vol. 3, No. 3).

Briefly stated, the static linking implementation of DLLs lets an EXE function be

called into memory from another file, a DLL.

When the EXE program loads, the necessary functions are loaded into memory from

the DLL, linkage references to the functions are resolved, and the EXE starts to run. Only

functions referenced at link time are loaded into memory, and the operating system can

discard and reload them as needed. Importantly, only one copy of any given function

needs to be in memory and it is then shared by all sessions requiring it.

There are various advantages to using the Dynamic-Link capabilities of OS/2 sys-

tems when developing code: smaller run times; the ability to truly share a single copy

of your developed routines between programs (when properly configured, only a single

copy of your routines will get loaded into memory regardless of how many processes

Ross M. Greenberg is a computer consultant and software author in NYC , specializing in

communications. His most recent product is RamNet, a background communications program,

BBS and E-mail program.
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Flow Diagram of FNDFILE Working

FNDFILE.EXE
(includes static linking to C library, DLL link
to debug(), do_find() and do_list())

(load-
time
link)FNDFILE3.DLL

(includes debug(), do_find() and run-time
setup for the routine pointer)

(run-time link)
(run-time link)

FNDFILE2.DLL
(includes do_list())

1 (static DLL link)

DOSCALLS.DLL
DosFindFirst() Routine
(and all other DLLs from load-time linking

later (perhaps) discarded by the
operating system if there’s a
memory crunch.

Dynamic Linking
OS/2 provides a second flavor

to its Dynamic-Link Library
Package: the ability to have
“run-time linking.” In essence,
this lets you load functions
(called procedures in DLL par-
lance) as needed. And when
necessary, you can (in essence)
discard them just as easily. You
can even mix the two different
types of DLLs, so that the oper-
ating system takes care of the
“usual” cases and you take care
of the unusual ones.

Necessary Functions
There are only five new func-

tion calls you need to learn to
take advantage of this feature.
But there are several strategies
you will need to consider as you
create and build your DLLs. The
five new functions are:

DosLoadModule
DosGetProcAddr
DosFreeModule
DosGet ModHandle
DosGetModName

In discussjng these functions
I’m going to begin using the C
notation provided in the most
recent set of manuals from the
Microsoft® Software Develop-
ment Kit (SDK); assembly
language programmers, be fore-
warned. The new definitions
and typedefs allow for more
machine independent code,
although they might be a bit
difficult to understand at first. A
bit of sound advice here: it is
essential that the very first thing
you do is to make a complete
hard-copy list of all the OS/2
header files. Study them now
and you will save yourself lots of
digging for the information
later. Future versions of OS/2
systems will most likely allow
the use of different addressing
schemes, so machine indepen-

use them); the ability to
distribute different versions of
your program packaged with
different DLLs to serve
different markets; and so on.

DLLs were such a good
concept that a majority of OS/2
is, in reality, a collection of
DLLs. Different OEMs, when
porting OS/2 over to their own
unique hardware environment,
need only replace individual
DLLs as they continue with their
port effort.

Each software author will
most likely find a different
aspect of the DLL concept that
fits their needs; DLLs are that
flexible. Although a little dif-
ficult to use initially, I’ve found
that most of my OS/2 code uses
DLLs more and more—and,
more and more, it uses routines
already written as I create my
own libraries, with a resolution
granularity that’s definable on a
routine-by-routine basis.

However, loading a DLL like
this doesn’t let you load func-
tions as you might wish—and all
functions you reference in the
link stage are loaded into
memory. If you happen to have a
very large, infrequently used
function, it will still be read from
disk, loaded into memory, and

THERE ARE VARIOUS
ADVANTAGES TO USING

THE DYNAMIC-LINK
CAPABILITES OF OS/2 WHEN

DEVELOPING CODE:
SMALLER RUN TIMES;
THE ABILITY TO TRULY

SHARE A SINGLE COPY OF
YOUR DEVELOPED

ROUTINES BETWEEN
PROGRAMS; THE ABILITY TO

DISTRIBUTE DIFFERENT
VERSIONS OF YOUR

PROGRAM PACKAGED WITH
DIFFERENT DLLS TO SERVE

DIFFERENT MARKETS;
AND SO ON.
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[FNDFILE.C]

INCL_DOS
INCL ERRORS

#include
#include
#include

idds pascal debug(USHORT);

idds pascal do_find(PSZ, PHDIR,

PFILEFINDBUF, USHORT, PUSHORT,

idds pascal do_list(PSZ, PHDIR,

PFILEFINDBUF, USHORT, PUSHORT,

USHORT
USHORT

USHORT,
ULONG);
USHORT,
ULONG);USHORT

USHORT

Len is: %2d. Filename i

(int)(f_ptr->cchName),

(PFILEFINDBUF) ((char f

(int)(fjptr->cchName));

pg 98
length

debug

>_buf[256] ;

CHAR

*)NULL;

USHORT

*name = (CHAR)NULL;

while(TRUE)

dence is actually a valuable con-
cept, even at this stage.

To begin with we have
DosLoadModule, defined (pro-
totyped) in BSEDOS.H:

USHORT DosLoadModule(
bomb_ptr,
bomb_ptr_len,
mod_name_ptr,
mod_hand1e_ptr)

PSZ bomb_ptr;

USHORT bomb_ptr_len;

PSZ mod_name_ptr;

PHMODULE mod_handle_ptr;

The bomb_ptr field is a
character array, of length
bomb_ptr_len. The operating
system will fill in this array with
the null-terminated name of the
DLL file that caused the error in
loading. Normally this null-ter-
minated string would be equiv-
alent to the actual module name,
mod_name_ptr. But since a
DLL can call other DLLs, there
is a possibility that some DLL
further down the “tree” might
have caused the problem.

If the function returns a zero,
it loaded successfully. If the
module was already loaded by
some other process, the refer-
ence count on the module is
incremented. The module will
remain loaded as long as the ref-
erence count is greater than zero.
Only segments of the DLL
marked as “preload” in the
DLL’s DEF file will be automat-
ically loaded.

The module name itself must
be the name of a DLL in your
LIBPATH or the function will
fail. The module handle must be
preserved for all other calls of
the run-time load package; think
of it as a file handle if you wish.
Once the module can be refer-
enced by a handle, routines
within the DLL can now be
accessed—if their address is
known.

USHORT DosGetProcAddr(

HMODULE

mod_handle,
function_name
function_ptr)

mod_handle;

PSZ function_name;

PPFN function_ptr;
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Figure 1
you wish to reference.

OS/2 does not provide a
means of discarding a function
you no longer have any use for.
But the operating system will
discard the function if it needs
the memory the function occu-
pies. If you no longer reference
the function, then it will not be
reloaded into memory.

On the other hand, when you
no longer need a DLL module,
you may discard it.

USHORT DosFreeModule(
mod_handle)

HMODULE mod_handle;

This will decrement the refer-
ence count of the module itself.
If the reference count returns to
zero, then all memory allocated
to the module will be deallo-
cated and discarded as required.
Even if the reference count of
the module is not zero, however,
the local process’s references to
the DLL are no longer valid;
calls to function addresses
returned by DosGetProcAddr will
fail with a protection violation.

When a program exits, it
returns all of its resources to the
operating system, so it is not
necessary to call DosFreeModule
when you exit your program—
although it is good program-
ming practice.

Two complementary func-
tions exist, for determining
whether the process has already
loaded a module and for deter-
mining the name of a module
based on its handle.

USHORT DosGetModHandle(
mod_ptr,
mod_handle_ptr)

PSZ mod_ptr;
PHMODULE mod_handle_ptr;

This function will return the
handle associated with a named
DLL module. It’s useful if you
want to double-check whether a
given module is already loaded.
Since the handle itself is local to
a given process, if you need to
use this call, you should double-
check your error processing—
how could you forget a handle?

54 strcpy(name, tmp_buf + 5);
else
if(!strncmp(tmp_buf, "len=", 4))
{

if(buf_ptr)
free(buf_ptr);

max_len = atoi(tmp_buf + 4);
buf_ptr = calloc(max_len, 1);

}
else
if(• strncmp(tmp_buf, "cnt=", 4))

num_files = atoi(tmp_buf + 4);
else
if(• strncmp(tmp_buf, "hand=”, 5))

sscanf(tmp_buf + 5, "%x", Shandie);
else
if(!strncmp(tmp__buf, "attrb=", 6))

sscanf(tmp_buf + 6, "%x", Sattrb);
else
if(’strncmp(tmp_buf, "list", 4))

do__list (name, (PHDIR)Shandie, attrb,
(PFILEFINDBUF)buf_ptr, max_len,
(PUSHORT)&num_files, (ULONG)0);

else
if(!strncmp(tmp_buf, "debug=", 6))
{

if(!debug(!strncmp(tmpjbuf + 6, "on", 2)))
{

printf("Error in subsequent call to debug\n");
exit (1);

}

else
if(!strncmp(tmp__buf, "show", 4))

show((PFILEFINDBUF)buf_ptr, num_files);
else
if(!strncmp(tmp_buf, "go", 2))

do_find(name, (PHDIR)Shandie, attrb,
(PFILEFINDBUF)buf_ptr, max_len,
(PUSHORT)&num_files, (ULONG)0);

else
if(*tmp_buf == ’?')

do_usage();
else

printf("?Huh?\n");

[FNDFILE.DEF]
IMPORTS FNDFILE3.do_find
IMPORTS FNDFILE3.debug
IMPORTS FNDFILE2.do_list

This function will return the
address in the DLL (specified in
mod_handle) of the named
function into the function
pointer, function_addr. Once
returned, it may be called via
dereferencing as with any other
function pointer. Functions with
the same name can be refer-
enced in different DLLs since
the handle to the DLL itself
would be different.

The name of the function,
however, can also be an ordinal
number. Each function within a
DLL can have a public name

associated with it. For efficien-
cy, you can remove the function
names from the DLLs and only
allow reference through the
ordinal number. As an example,
DOSCALLS.DLL does not
have the function names readily
available, and functions con-
tained therein must be done by
ordinal number.

An ordinal number is of the
form “#xyz”—it must start with
a pound sign, and the remaining
part of the string (that is, xyz) is
the ASCII representation of the
ordinal number of the function
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[FNDFILE2.C]

#define
#define

ERRORS
DOS

#include
#include

, PHDIRUSHORT
hptr, USHORT
PFILEFINDBUF

USHORT ]
PUSHORT
ULONG r<

USHORT

USHORT

[FNDFILE2.DEF]
LIBRARY FNDFILE2
EXPORTS do list

There are some specific
reasons for using this function
in a large program. Potentially,
some other member of your
programming team could have
released the module, and then
reloaded it later. This would
usually cause it to get a different
handle, which might cause you a
problem if the handle is in a
local, static variable. You can
find a way around that problem
in the debug routine in the
sample program.

DosGetModName, which is
the best function, is defined as
follows:

USHORT DosGetModName(
mod_handle,
name_len,
name_ptr)

HMODULE mod_handle;
USHORT name_len;
PCHAR name_ptr;

This function simply returns
the DLL name associated with a
given handle into the character
array of name_ptr. If the name of
the DLL can’t fit into the charac-
ter array, then an error condition
is returned. This is useful in
determining the name of a cur-
rently loaded DLL. Again, take
a look at the debug function in
the sample program for an idea
of how to use it.

DLLs Call DLLs
One of the more interesting

aspects of DLLs has largely
been ignored until now; the abil-
ity of a DLL to utilize another
DLL almost infinitely. I use this
technique as an efficient way of
dealing with two distinct DLLs
utilized via the run-time load
mechanisms.

There is a decent enough rea-
son for it. You needn’t change
any code in an applications
program to take advantage of
things like extended commands
and functions; it becomes trans-
parent where the actual DLL
“lives,” and the total separation
of the two DLLs—through a
third, common DLL—allows
easy modification of one

without having to recompile or
maintain the other.

FNDFILE
The simple application I use

to demonstrate the run-time
loading capabilities of OS/2,
FNDFILE (see Figures 1, 2, and
3), uses the OS/2 function call,
DosFindFirst. This function lets
you retrieve structures contain-
ing information about files with
names matching a given pattern.
You can retrieve information on
as many files matching the pat-
tern as you like, so long as you
provide a buffer large enough to
hold the returned information.

One interesting little quirk in
DosFindFirst is that—although
it is documented to fill a buffer

AN INTERESTING CONCEPT
USED IN OS/2 IS THAT OF
A “DIRECTORY-SEARCH

HANDLE.” THIS LETS YOU
CONSIDER THE

DOSFINDFIRST FUNCTION
A RESOURCE WHICH CAN

BE ALLOCATED AND
DEALLOCATED LIKE ANY

OTHER RESOURCE.
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Figure 3: Source Code for FNDFILE3.C
with the contents of a structure,
ca l led  F ILEFINDBUF—  it
cheats a little. Basically the
structure is a bunch of dates and
times, a couple of longs (to indi-
cate filesize), a character count,
and an array of 13 characters,
which holds the filename. The
character array contains only
enough bytes to satisfy the need
for a null-terminated string. The
next structure starts immediate-
ly after the null byte, so a simple
pointer-to-structure increment
doesn’t work, since that incre-
ments the pointer by exactly one
sizeof(FILEFINDBUF). There-
fore, when examining the code
in the show routine, please for-
give the ugliness of the incre-
ment to the pointer.

An interesting concept used in
OS/2 is that of a “directory-
search handle.” This lets you
consider the DosFindFirst func-
tion a resource which can be
allocated and deallocated like
any other resource. For example
you could set up a number of
initial requests to find a different
matching filename pattern (say,
the same pattern in different
directories) and to then call
functions, passing the directory-
search handle as a parameter,
which in turn call DosFindNext
using those handles to find the
next file on a pattem-by-pattem
basis. Calling DosFindFirst
with a directory-search handle
already in use causes closing
and then reuse of that handle.

Other parameters in the
DosFindFirst function let you
include matching “special” files
in your request, including direc-
tories, hidden files, read-only
files, etc. By examining the
returned attribute for each of the
files, you can determine what
type of special file you’re cur-
rently examining.

The DosFindFirst function is
useful enough that most of us
will have some need of it. Yet
it’s also sufficiently complex
that we’ll all make mistakes

56 ♦define INCL_BASE
♦define INCL_ERRORS
♦define INCL_DOS

♦include <os2.h>
♦include <stdio.h>
♦include <stdlib.h>
♦include <string.h>

♦define FAIL_BUF_LEN 128
PSZ mod_name[] = {"doscalls", "fndfile2"};
PSZ routine_name[] = {"♦64", "DO_LIST"};

USHORT (pascal far *routine)(PSZ, PHDIR, USHORT, PFILEFINDBUF,
USHORT, PUSHORT, ULONG);

USHORT far _loadds pascal do_find(PSZ namejptr, PHDIR
hptr, USHORT attrb,
PFILEFINDBUF buf-ptr,
USHORT buf_len,
PUSHORT num__ptr,
ULONG reserved)

{
USHORT stat;

if(!(stat = routine(name__ptr, hptr, attrb, bufjptr,
buf_len, num_jptr, reserved)))

{
printf("Good return. Files found = %d\n", *num_ptr);

}
else
{

switch(stat)
{
case ERROR_BUFFER_OVERFLOW:

printf("Buffer Overflow - Increase Buffer
Size\n”);

break;

case ERROR-DRIVE_LOCKED:
printf("Drive Locked\n");
break;

case ERROR-F ILE_NOT_FOUND:
printf("File: %s not found\n", name_ptr);
break;

case ERROR_INVALID_HANDLE:
printf("Invalid handle: %d\n", *hptr);
break;

case ERROR_INVALID-PARAMETER:
printf("Invalid Parameter\n");
break;

case ERROR_NO_MORE_FILES:
printf("Ran out of files\n");
break;

case ERROR-NO_MORE-SEARCH-HANDLES:
printf("Can;t allocate another Search Handle\n");
break;

case ERROR—NOT—DOS—DISK:
printf("Not a DOS Disk\n");
break;

case ERROR-PATH-NOT-FOUND:
printf("I can't locate that Path\n");
break;

default :
printf("Unknown error in FindFirst: %d\n", stat);
break; i i

_ __ ___________ ' ___ M Mil 11 ■
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when we first use it. Addition-
ally it makes a perfect test case
for a debug DLL.

The structure of the FNDFILE
program is a bit convoluted, so
some explanation is in order.
The main routine lets you enter
the parameters of your choice
via a simple keyword parsing if-
then-else clause. If you enter the
“GO” command, you call the
do_find function. Other “action”
keywords let you turn debug-
ging on or off, show your current
parameter list, and show the
current return buffer contents.

The do_find function is called
with parameters passed exactly
as DosFindFirst expects them; it
makes it easier to do the call
later. When the find program is
first invoked, the debug function
is called with the flag turned off,
and debug itself (in FNDFILE3)
loads the normal DosFindFirst
function from the appropriate
DLL, DOSCALLS.

You cannot, however, just
load the DosFindFirst function
as you’d wish. The function
name isn't immediately access-
ible from the DOSCALLS
library. Since the name is “pri-
vate,” I was forced to do a hex
dump of the OS2.LIB file (or the
DOSCALLS.LIB file, depend-
ing on your version of OS/2) and
to find the so-called “ordinal
number” of the DosFindFirst
function.

An ordinal number is basic-
ally a simple numeric represen-
tation of the function number
itself in the library, and is a more
efficient way of calling impor-
tant functions than forcing the
kernel to do a stmcmp on a func-
tion name.

The hex dump (see Figure 4)
shows 64 as the ordinal number
for DosFindFirst. To indicate
that you’re using an ordinal
number, you must specify the
number as an ASCII null-termi-
nated string, with a prefixed
to it as the function name in the
DosLoadProcAddr function.

57}
}
return(stat);

far _loadds pascal debug(USHORT debug_flag)
(
USHORT stat;
CHAR fail_buf[FAIL_BUF_LEN];
static HMODULE handle = 0;
HMODULE tmp_handle;
CHAR tmp_buf[128];

printf("Debug is: %s\n", debug_flag ? "On" "Off");

/* already a DLL loaded? */

if(handle)
{

/* some DLL already loaded. Requested DLL? */

stat = DosGetModHandle(mod_name[debug_flag],
&tmp_handle);

/* if error, or a handle mismatch, then it isn't
* the requested DLL */

if(stat || tmp_handle •= handle)
{

/* Get name of the DLL currently loaded */

if(stat = DosGetModName(handle, 128,
tmp_buf))

{
printf("Couldn't retrieve loaded DLL Name. Error
code is: %d\n", stat);
return(FALSE);

}
else

printf("Currently Loaded DLL is: %s\n",
tmp_buf);

/* free the already loaded module, whatever
* it is */

DosFreeModule(handle);
}
else
<

/* current handle is for requested DLL.
* Simply return */

printf("DLL (%s) already loaded\n",
mod_name[debug_flag]);

return(TRUE);
)

/* wrong DLL is now freed */
/* try to load the requested DLL, and get the entry
* points */

if(stat = DosLoadModule(fail_buf, FAIL_BUF_LEN,
mod_name[debug_flag],
Shandie))

{
printf("Couldn't load: %s (stat is :%x)\n",

mod_name[debug_flag], stat);
printf("DLL problem was in: %s\n", fail_buf);
return(FALSE);

}
else

printf("Module handle is: %d\n", handle);
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Figure 3
DosFindFirst pointer—but this
is only demonstration code, in
any case.

The call to DosFindFirst is
done simply to get back the
status code, which is expected
and will be processed by the
do_find function. The number
of files to be found on sub-
sequent calls is reset, as is the
original handle.

The important thing here to
realize is that the do_find func-
tion calls either do_list or
DosFindFirst without really
knowing which. So in a trans-
parent manner, you can create
your program with full run-time
loading of your difficult func-
tions, debug them completely,
then let the actual programming
effort continue.

An obvious extension of this
technique would let you provide
your end-users with a full debug
DLL of all your functions and all
the OS/2 system calls you use.
Then when you get that inev-
itable tech support phone call,
you can just have the user turn on
debug mode and modem you a
copy of the voluminous output
the debug DLL produces.

Run-time loading is one of the
treasures in OS/2 which, with
enough exploration, you’ll find
extraordinarily valuable as you
produce some of the larger pro-
grams OS/2 makes possible. In
fact, you can prompt for a DLL
to be loaded, and load it on the
spot! The name doesn't have to
be in the code. Even the simple
debug facility demonstrated
here dwarfs the capabilities of
other debugging methods in
other operating systems.

/* Now get the entry point for the requested routine */

if (stat = DosGetProcAddr(handle,
routine_name[debug__flag], routine))

{
printf("Couldn't get routine: %s (stat is :%d)\n",

routine_name[debug_flag], stat);
return(FALSE);

}
else

printf(’’Routine address is: %lx\n", routine);

/* module loaded, entry point returned, so we return */
return(TRUE);

}

58

[FNDFILE3.DEF]
LIBRARY FNDFILE3
EXPORTS do_find
EXPORTS debug
IMPORTS FNDFILE2.do_list

Partial Dump of \PMSDK\LIB\OS2.LIB

OFCO : 00 00 8A 02 00 00 00 00 00 00 00 00 00 00 00 00 .................
OFDO: 80 OF 00 0D 44 4F 53 43 41 4C 4C 53 30 30 30 36 ....DOSCALLS0006
OFEO : 33 16 88 ID 00 00 A0 01 01 OC 44 4F 53 46 49 4E 3......... DOSFIN
OFFO: 44 46 49 52 53 54 08 44 4F 53 43 41 4C 4C 53 40 DFIRST.DOSCALLS0
1000: 00 00 8A 02 00 00 00 00 00 00 00 00 00 00 00 00 .................
1010: 80 OF 00 0D 44 4F 53 43 41 4C 4C 53 30 30 30 36 ....DOSCALLS0006
1020: 34 15 88 1C 00 00 A0 01 01 0B 44 4F 53 46 49 4E 4......... DOSFIN
1030: 44 4E 45 58 54 08 44 4F 53 43 41 4C 4C 53 41 00 DNEXT.DOSCALLSA.
1040: 00 8A 02 00 00 00 00 00 00 00 00 00 00 00 00 00 .................

Figure 4 Looking through the OS2.LIB file, you can find the correlation
between an OS/2 function call by its name and its ordinal reference

Before you can call the
DosLoadProcAddr function,
the appropriate DLL must be
opened up and a handle, re-
turned by the operating system,
preserved for future reference.
Use of the DosGetModHandle
checks whether the program has
already loaded the DLL; if so,
DosLoadModule, the function
which returns the handle
address, is not called. If, how-
ever, the DLL is not open, this
implies that the other DLL is
open (for all calls to debug but
the first). Therefore a call is
made to DosGetModName,
simply to show the name of the
DLL already loaded, and the
open DLL is closed via the
DosFreeModule call.

The DosLoadProcAddr func-
tion returns the actual address of
the requested function, whether

called with a function name
(which should be in uppercase)
or an ASCII-based ordinal
number. Simply by calling this
function via the normal C mech-
anisms, you can call any one of a
number of functions, as long as
the parameters match.

One of the functions with
matching parameters is the
do_list function. This is in
FNDFILE2 (see Figure 2). This
function simply prints out all of
your parameters, saving the
ones the call might change, then
calls the real DosFindFirst func-
tion. This implies that the func-
tion is already loaded when you
first invoke the FNDFILE pro-
gram. If you want to avoid this
“preloading,” you can also have
the do_list function call all the
appropriate run-time load func-
tions for its own copy of the
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How the 8259A Programmable
Interrupt Controller Manages
External I/O Devices

59

Jim Kyle and Chip Rabinowitz

nlike software interrupts, whichare
service requests initiated by a program, hardware
interrupts occur in response to electrical signals
received from a peripheral device such as a serial
port or a disk controller, or they are generated

internally by the microprocessor itself. Hardware interrupts,
whether external or internal to the microprocessor, are given priori-
tized servicing by the Intel®
CPU architecture.

The  8086  f ami ly  of
mic rop roces so r s  (wh ich
includes the 8088, 8086, 80186,
80286, and 80386) reserves the
first 1024 bytes of memory
(addresses 0000:0000H through
0000:03FFH) for a table of 256
interrupt vectors, each a 4-byte
far pointer to a specific interrupt
service routine (ISR) that is
carried out when the corre-
sponding interrupt is processed.
The design of the 8086 family
requires certain of these inter-
rupt vectors to be used for spe-
cific functions (see Figure 1).
Although Intel actually reserves
the first 32 interrupts, IBM, in
the original PC, redefined usage
of Interrupts 05H to 1FH. Most,
but not all, of these reserved
vectors are used by software,
rather than hardware, interrupts;
the redefined IBM uses are
listed in Figure 2.

Nestled in the middle of
Figure 2 are the eight hardware
interrupt vectors (08-0FH) IBM
implemented in the original PC
design. These eight vectors
provide the maskable interrupts

u
Figure 1: Intel Reserved Exception Interrupts

| Interrupt
j Number Definition

OOH Divide by zero
01H Single step
02H Nonmaskable interrupt (NMI) [

03H Breakpoint trap
04H Overflow trap
05H BOUND range exceeded (see note 1 )
06H Invalid opcode (see note 1)
07H Coprocessor not available (see note 2)
OSH Double-fault exception (see note 2)
09H Coprocessor segment overrun (see note 2)
0AH Invalid task state segment (see note 2)
0BH Segment not present (see note 2)
0CH Stack exception (see note 2)
0DH General protection exception (see note 2)
0EH Page fault (see note 3)
0FH (Reserved)
10H Coprocessor error (see note 2)

Note 1: The 80186, 80286, and 80386 microprocessors only. 1

Note 2: The 80286 and 80386 microprocessors only.
Note 3: The 80386 microprocessor only.

for the IBM® PC-family and
close compatibles. Additional
IRQ lines built into the IBM PC/
AT® are discussed under The
IRQ Levels below.

The conflicting uses of the
interrupts listed in Figures 1 and
2 have created compatibility

This article is an excerpt from The MS-DOS" Encyclopedia
(Microsoft Press, 1988}—Ed.
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Figure 2: IBM Interrupt Usage
microp roces so r -gene ra t ed
exception interrupts (refer to
Figure 1). Second is the non-
maskable interrupt, or NMI
(Interrupt 02H), which is
generated when the NMI line
(pin 17 on the 8088 and 8086,
pin 59 on the 80286, pin B8 on
the 80386) goes high (active). In
the IBM PC family (except the
PCjr and the Convertible), the
nonmaskable interrupt is
designated for memory parity
errors. Third are the maskable
interrupts, which are usually
generated by external devices.

Maskable interrupts are sent
to the main processor through a
chip called the 8259A Program-
mable Interrupt Controller
(PIC). When it receives an inter-
rupt request, the PIC signals the
microprocessor that an interrupt
needs service by driving the
interrupt request (INTR) line of
the main processor to high volt-
age level. This article focuses on
the maskable interrupts and the
8259A because it is through the
PIC that external I/O devices
(disk drives, serial communica-
tion ports, and so forth) gain
access to the interrupt system.

Interrupt Priorities
The Intel microprocessors

have a built-in priority system
for handling interrupts that
occur simultaneously. Priority
goes to the internal instruction
exception interrupts, such as
Divide by Zero and Invalid
Opcode, because priority is
determined by the interrupt
number: Interrupt OOH takes
priority over all others, whereas
the last possible interrupt,
0FFH, would, if present, never
be allowed to break in while
another interrupt was being
serviced. However, if interrupt
service is enabled (the micro-
processor’s interrupt flag is set),
any hardware interrupt takes
priority over any software inter-
rupt (INT instruction).

The priority sequencing by

601 Interrupt
Number Definition

05H Print screen
06H Unused
07H Unused
08H Hardware IRQ0 (timer-tick) (see note 1)
09H Hardware IRQ1 (keyboard)
0AH Hardware IRQ2 (reserved) (see note 2)
0BH Hardware IRQ3 (COM2)
0CH Hardware IRQ4 (COMI)
0DH Hardware IRQ5 (fixed disk)
0EH Hardware IRQ6 (floppy disk)
0FH Hardware IRQ7 (printer)
10H Video service
11H Equipment information
12H Memory size
13H Disk I/O service
14H Serial-port service
15H Cassette/network service
16H Keyboard service
17H Printer service
18H ROM BASIC
19H Restart system
1AH Get/Set time/date
1BH Control-Break (user defined)
1CH Timer tick (user defined)
1DH Video parameter pointer
1EH Disk parameter pointer
1FH Graphics character table
Note 1: IRQ = Interrupt request line.
Note 2: See figures 7 and 8.

problems as the 8086 family of
microprocessors has developed.
For complete compatibility with
IBM equipment, the IBM usage
must be followed even when it
conflicts with the chip design.
For example, a BOUND error
occurs if an array index exceeds
the specified upper and lower
limits (bounds) of the array,
causing an Interrupt 05H to be
generated. But the 80286
processor used in all AT-class
computers will, if a BOUND
error occurs, send the contents
of the display to the printer,
because IBM uses Interrupt 05H
for the Print Screen function.

Hardware Interrupt
Categories

The 8086 family of
microprocessors can handle
three types of hardware
interrupts. First are the internal,

Figure 3: General Interrupt Sequence

Push flags

Disable interrupts

Push CS:IP

Get address of ISR
from table; place in

Process interrupt

IRET

Restore CS:IP, flags
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Figure 4: Maskable Interrupt Service

61MICROPROCESSOR
DEVICE 8259A

Process
' AnyX

IRQs \N2.
activeI /  *

IRQ
Signals request

Yes INTR \ N °
high?

< Is this >
INT masket
X off? y

Yes
VYes

No f INTs \No
.enabled?/******

f INT X
being

.serviced?,

Yes

V Yes

Push flags
V No

INTR
Signal request

Disable INTs

Push CS:IP

Acknowledge
INTINTA

Place INT num-
ber on data bus Data

bus Get INT
number

Calculate
new CS:IP

interrupt number must not be
confused with the priority reso-
lution performed by hardware
external to the microprocessor.
The numeric priority discussed
here applies only to interrupts
generated within the 8086 fam-
ily of microprocessor chips and
is totally independent of system
interrupt priorities established
for components external to the
microprocessor itself.

Interrupt Service Routines
For the most part, program-

mers need not write hardware-
specific program routines to
service the hardware interrupts.
The IBM PC BIOS routines,
together with MS-DOS ser-
vices, are usually sufficient. In
some cases, however, the MS-
DOS operating system and the
ROM BIOS do not provide
enough assistance to ensure
adequate performance of a pro-
gram. Most notable in this
category is communications
software, for which program-
mers usually must access the
8259A and the 8250 Universal
Asynchronous Receiver and
Transmitter (UART) directly.

Two major characteristics
distinguish maskable interrupts
from all other events that can
occur in the system: they are
totally unpredictable, and they
are highly volatile. In general, a
hardware interrupt occurs when
a peripheral device requires the
complete attention of the system
and data will be irretrievably
lost unless the system responds
rapidly.

All things are relative, how-
ever, and this is especially true
of the speed required to service
an interrupt request. For
example, assume that two inter-
rupt requests occur at essentially
the same time. One is from a
serial communications port
receiving data at 300 bps; the
other is from a serial port receiv-
ing data at 9600 bps. Data from
the first serial port will not

change for at least 30 millisec-
onds, but the second serial port
must be serviced within one
millisecond to avoid data loss.

Unpredictability
Because maskable interrupts

generally originate in response
to external physical events, such
as the receipt of a byte of data
over a communications line, the
exact time at which such an
interrupt will occur cannot be
predicted. Even the timer inter-
rupt request, which by default

TWO MAJOR
CHARACTERISTICS

DISTINGUISH MASKABLE

INTERRUPTS FROM ALL
OTHER EVENTS THAT

CAN OCCUR: THEY ARE
TOTALLY UNPREDICTABLE

AND HIGHLY VOLATILE.
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Figure 5: Block Diagram of the 8259A Programmable Interrupt Controller
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recognized, be prepared to ser-
vice all maskable interrupt
requests. Conversely, if inter-
rupts cannot be serviced, they
must all be disabled. The 8086
family of microprocessors pro-
vides the Set Interrupt Flag
(STI) instruction to enable
maskable interrupt response and
the Clear Interrupt Flag (CLI)
instruction to disable it. The
interrupt flag is also cleared
automatically when a hardware
interrupt response begins; the
interrupt handler should execute
STI as quickly as possible to
allow higher priority interrupts
to be serviced.

Volatility
As noted earlier, a maskable

interrupt request must normally
be serviced immediately to pre-
vent loss of data, but the concept
of immediacy is relative to the
data transfer rate of the device
requesting the interrupt. The
rule is that the currently avail-
able unit of data must be pro-
cessed (at least to the point of
being stored in a buffer) before
the next such item can arrive.
Except for such devices as disk
drives, which always require
immediate response, interrupts
for devices that receive data are
normally much more critical
than interrupts for devices that
transmit data.

The problems imposed by
data volatility during hardware
interrupt service are solved by
establishing service priorities
for interrupts generated outside
the microprocessor chip itself.
Devices with the slowest trans-
fer rates are assigned lower
interrupt service priorities, and
the most time-critical devices
are assigned the highest priority
of interrupt service.

Maskable Interrupts
The microprocessor handles

all interrupts (maskable, non-
maskable, and software) by
pushing the contents of the flags

Figure 6: Eight-Level Interrupt Map

(see note 1)

Note 1: This request cannot be reliably generated by older versions of the IBM
Monochrome/Printer Adapter and compatibles. Printer drivers that depend on this
signal for operation with these cards are subject to failure.

IRQ
Line Interrupt Description
IRQO 08H Timer tick, 18.2 times per second
IRQ1 09H Keyboard service required
IRQ2
IRQ3
IRQ4
IRQ5

OAH
OBH
OCH
ODH

I/O channel (unused on IBM PC/XT)
C0M1 service required
COM2 service required
Fixed-disk service required

IRQ6 OEH Floppy-disk service required
IRQ7 OFH Data request from parallel printer

occurs approximately 18.2
times per second, cannot be
predicted by any program that
happens to be executing when
the interrupt request occurs.

Because of this unpredicta-
bility, the system must, if it
allows any interrupts to be
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Figure 7: Sixteen-Level Interrupt Map

63register onto the stack, disabling
the interrupt flag, and pushing
the current contents of the CS:IP
registers onto the stack.

The microprocessor then
takes the interrupt number from
the data bus, multiplies it by 4
(the size of each vector in bytes),
and uses the result as an offset
into the interrupt vector table
located in the bottom 1Kb (seg-
ment 0000H) of system RAM.
The 4-byte address at that
location is then used as the new
CS:IP value (see Figure 3).

External devices are assigned
dedicated interrupt request lines
(IRQs) associated with the
8259A. See the subsection titled
“The IRQ Levels” below. When
a device requires attention, it
sends a signal to the PIC via its
IRQ line. The PIC, which func-
tions as an “executive secretary”
for the external devices, oper-
ates as shown in Figure 4. It
evaluates the service request
and, if appropriate, causes the
microprocessor’s INTR line to
go high. The microprocessor
then checks whether interrupts
are enabled, that is, whether the
interrupt flag is set. If they are,
the flags are pushed onto the
stack, the interrupt flag is dis-
abled, and CS:IP is pushed onto
the stack.

The microprocessor acknowl-
edges the interrupt request by
signaling the 8259A via the
interrupt acknowledge (INTA)
line. The 8259A then places the
interrupt number on the data
bus. The microprocessor gets
the interrupt number from the
data bus and services the inter-
rupt. Before issuing the IRET
instruction, the interrupt service
routine must issue an end-of-
interrupt (EOI) sequence to the
8259A so that other interrupts
can be processed. This is done
by sending 20H to port 20H.
(The similarity of numbers is
pure coincidence.)

The 8259A (see Figure 5) has a
number of internal components,

1 ,RQ
I Line Interrupt Description _____________ j

IRQO 08H Timer tick, 18.2 times per second

IRQ1 09H Keyboard service required
IRQ2 OAH INT from slave 8259A:
IRQ8 70H Real-time clock service
IRQ9 71H Software redirected to IRQ2
IRQ10 72H Reserved
IRQ11 73H Reserved
IRQ12 74H Reserved
IRQ13 75H Numeric coprocessor
1RQ14 76H Fixed-disk controller
IRQ1S 77H Reserved
IRQ3 OBH COM2 service required
IRQ4 OCH COMI service required
IRQS ODH Data request from LPT2
IRQ6 OEH Floppy-disk service required
IRQ7 OFH Data request from LPT1

Figure 8:

DATA BUS Note: During
the INTA
sequence,
the corre-
sponding bit
in the ISR
register of
both 8259As
is set, so two
EOls must be
issued to
complete the

CONTROL BUS

INTA INT INTA INT

Control lines
Slave 8259A Master 8259A service—one

for the slave
and one for
the master.

IRQ2

IRQ15IRQ13 IRQl1lRQ9

IRQ14 IRQ12 IRQ10 IRQ8

IRQ7 IRQ5 IRQ3 IRQ1

IRQ4 IRQO

many of them under software
control. Only the default set-
tings for the IBM PC family are
covered here.

Three registers influence the
servicing of maskable inter-
rupts: the interrupt request
register (IRR), the in-service
register (ISR), and the interrupt
mask register (IMR).

The IRR is used to keep track
of the devices requesting atten-
tion. When a device causes its

INTERRUPTS FOR DEVICES
THAT RECEIVE DATA ARE
NORMALLY MUCH MORE

CRITICAL THAN INTERRUPTS
FOR DEVICES THAT

TRANSMIT DATA.
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I Figure 9 The Divide by Zero Replacement Handler
name divzero
title ’DIVZERO - Interrupt OOH Handler’

/DIVZERO.ASM: Demonstration Interrupt OOH Handler
/This code is specific to 80286 and 80386 microprocessors.
;To assemble, link, and convert to a COM file:

; MASM DIVZERO
; LINK DIVZERO
; EXE2BIN DIVZERO.EXE DIVZERO.COM
; DEL DIVZERO.EXE

cr equ Odh ; ASCII carriage return
If equ Oah ; ASCII linefeed
eos equ ’$ ’ ; end of string marker

_TEXT segment word public ’CODE'

assume cs: TEXT,ds: TEXT,es: TEXT,ss: TEXT

org lOOh

entry: jmp start ; skip over data area

intmsg db ’Divide by Zero Occurred!’,cr,If,eos

divmsg db 'Dividing ’ ; message used by demo
pari db 'OOOOh' ; dividend goes here

db • by ’
par2 db ’OOh’ ; divisor goes here

db ’ equals ’
par3 db ’OOh' ; quotient here

db ’remainder’
par4 db ’OOh’ ; and remainder here

db cr,lf,eos

oldintO dd ? ; save old IntOOH vector

intflag db 0 ; nonzero if divide by
/ zero interrupt occurred

oldip dw 0 ; save old IP value

;The routine TintO’ is the actual divide by zero interrupt handler./It gains control whenever a divide by zero or overflow occurs. Its;action is to set a flag and then increment the instruction pointer;saved on the stack so that the failing divide will not be reexecuted;after the IRET.

/In this particular case we can call MS-DOS to display a message during/interrupt handling because the application triggers the interrupt
/intentionally. Thus, it is known that MS-DOS or other interrupt
/handlers are not in control at the point of interrupt.

intO: pop cs:oldip /capture instruction pointer

push ax
push bx
push ex
push dx
push di
push si
push ds
push es

push cs ; set DS = CS
pop ds

mov ah,08h / print error message
mov dx,offset _TEXT:intmsg
int 21h

IRQ line to go high, to signal
the 8259A that it needs service,
a bit is set in the IRR that cor-
responds to the interrupt level of
the device.

The ISR specifies the inter-
rupt levels that are currently
being serviced; an ISR bit is set
when an interrupt has been
acknowledged by the CPU (via
INTA) and the interrupt number
has been placed on the data bus.
The ISR bit associated with a
particular IRQ remains set until
an EOI sequence is received.

The IMR is a read/write regis-
ter (at port 21H) that masks
(disables) specific interrupts.
When a bit is set in this register,
the corresponding IRQ line is
masked and no servicing for it is
performed until the bit is
cleared. Thus, a particular IRQ
can be disabled while all others
continue to be serviced.

The fourth major block in Fig-
ure 5, labeled Priority resolver,
is a complex logical circuit that
forms the heart of the 8259A.
This component combines the
statuses of the IMR, the ISR, and
the IRR to determine which, if
any, pending interrupt request
should be serviced and then
causes the microprocessor’s
INTR line to go high. The prior-
ity resolver can be programmed
in a number of modes, although
only the mode used in the IBM
PC and close compatibles is
described here.

The IRQ Levels
When two or more unserviced

hardware interrupts are pend-
ing, the 8259A determines
which should be serviced first.
The standard mode of operation
for the PIC is the fully nested
mode, in which IRQ lines are
prioritized in a fixed sequence.
Only IRQ lines with higher pri-
ority than the one currently
being serviced are permitted to
generate new interrupts.

The highest priority is IRQO,
and the lowest is IRQ7. Thus, if
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add oldip,2 / bypass instruction causing

/ divide by zero error

mov intflag,1 / set divide by 0 flag

pop es / restore all registers

pop ds
pop si
pop di
Pop dx

pop ex

pop bx

Pop ax

push cs:oldip / restore instruction pointer

iret / return from interrupt

65an Interrupt 09H (signaled by
IRQ1) is being serviced, only an
Interrupt 08H (signaled by
IRQO) can break in. All other
interrupt requests are delayed
until the Interrupt 09H service
routine is completed and has
issued an EOI sequence.

Eight-level Designs
The IBM PC and PC/XT (and

port-compatible computers)
have eight IRQ lines to the PIC
chip—IRQO through IRQ7.
These lines are mapped into
interrupt vectors for Interrupts
08H through OFH (that is, 8 +
IRQ level). These eight IRQ
lines and their associated inter-
rupts are listed in Figure 6.

Sixteen-level Designs
In the IBM PC/AT, 8 more

IRQ levels have been added by
using a second 8259A PIC (the
“slave”) and a cascade effect,
which gives 16 priority levels.

The cascade effect is accom-
plished by connecting the INT
line of the slave to the IRQ2 line
of the first, or master, 8259A
instead of to the microprocessor.
When a device connected to one
of the slave’s IRQ lines makes
an interrupt request, the INT line
of the slave goes high and causes
the IRQ2 line of the master
8259A to go high, which, in
turn, causes the INT line of the
master to go high and thus inter-
rupts the microprocessor.

The microprocessor, ignorant
of the second 8259A’s presence,
simply generates an interrupt
acknowledge signal on receipt
of the interrupt from the master
8259A. This signal initializes
both 8259A and also causes the
master to turn control over to the
slave. The slave then completes
the interrupt request.

On the IBM PC/AT, the eight
additional IRQ lines are mapped
to Interrupts 70H through 77H
(see Figure 7). Because the eight
additional lines are effectively
connected to the master

/The code beginning at ’start' is the ap
plication program. It alters

/the vector for Interrupt OOH to point t
o the new handler, carries

/out some divide operations (including o
ne that will trigger an

/interrupt) for demonstration purposes, 
restores the original

/contents of the Interrupt OOH vector, a
nd then terminates.

start: mov
int

ax,3500h
21h

/ get current contents

; oflnt OOH vector

mov word ptr oldintO,

/ save segment:offset

/ of previous Int OOH handler

bx

mov word ptr oldint0+2,es

mov dx,offset into
/ install new handler ...

; DS:DX - handler address

mov ax,2500h ; call MS-DOS to set

int 21h / Int OOH vector

mov ax,20h

/ now our handler is active,

; carry out some test divides

/ test divide

mov bx,1 ; divide by 1

call

mov

divide

ax,1234h / test divide

mov bx,5eh / divide by 5EH

call

mov

divide

ax,5678h / test divide

mov bx,7fh / divide by 127

call

mov

divide

ax,20h / test divide

mov bx,0 / divide by 0

call divide / (triggers interrupt)

Ids dx,oldintO

/ demonstration complete,

/ restore old handler

; DS:DX = handler address

mov ax,2500h / call MS-DOS to set

int 21h / Int OOH vector

mov ax,4c00h / final exit to MS-DOS

int 21h / with return code = 0

/The routine ’divide’ carries out a tria
l division, displaying the

/arguments and the results. It is called
 with AX = dividend and

/BL * divisor.
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66 divide proc near

push ax ; save arguments
push bx

mov di Toffset pari ; convert dividend to
call wtoa ; ASCII for display

mov ax,bx ; convert divisor to
mov di, offset par2 ; ASCII for display
call btoa

pop bx ; restore arguments
pop ax

div bl ; perform the division
cmp intflag,0 ; divide by zero detected?
jne nodiv ; yes, skip display

push ax ; no, convert quotient to
mov di,offset par3 ; ASCII for display
call btoa

pop ax ; convert remainder to
xchg ah, al ; ASCII for display
mov di, offset par4
call btoa

mov ah,09h ; show arguments, results
mov dx,offset divmsg
int 21h

nodiv: mov intflag,0 ; clear divide by 0 flag
ret ; and return to caller

divide endp

8259A’s IRQ2 line, they take
priority over the master’s IRQ3
through IRQ7 events. The cas-
cade effect is graphically repre-
sented in Figure 8.

Programming for the
Hardware Interrupts

Any program that modifies an
interrupt vector must restore the
vector to its original condition
before returning control to DOS
(or to its parent process). Any
program that totally replaces an
existing hardware interrupt
handler with one of its own must
perform all the handshaking and
terminating actions of the
original: reenable interrupt ser-
vice, signal EOI to the interrupt
controller, and so forth. Failure
to follow these rules has led to
many hours of programmer
frustration.

When an existing interrupt
handler is completely replaced
with a new, customized routine,
the existing vector must be
saved so it can be restored later.
Although it is possible to modify
the 4-byte vector by directly
addressing the vector table in
low RAM (and many published
programs have followed this
practice), any program that does
so runs the risk of causing
system failure when the pro-
gram is used with multitasking
or multiuser enhancements or
with future versions of DOS.
The only technique that can be
recommended for either obtain-
ing the existing vector values or
changing them is to use the MS-
DOS functions provided for this
purpose: Interrupt 21H Func-
tions 25H (Set Interrupt Vector)
and 35H (Get Interrupt Vector).

After the existing vector has
been saved, it can be replaced
with a far pointer to the replace-
ment routine. The new routine
must end with an IRET instruc-
tion. It should also take care to
preserve all microprocessor reg-
isters and conditions at entry and
restore them before returning.

wtoa proc near ; convert word to hex ASCII
; call with AX - binary value

DI » addr for string
returns AX, CX, DI destroyed

push ax save original value
mov al, ah
call btoa convert upper byte
add di, 2 increment output address
pop ax
call btoa convert lower byte
ret return to caller

wtoa endp

btoa proc near convert byte to hex ASCII
call with AL - binary value

DI = addr to store string
returns AX, CX destroyed

mov ah, al save lower nibble
mov ex, 4 shift right 4 positions
shr al, cl to get upper nibble
call ascii convert 4 bits to ASCII
mov [dil,al store in output string
mov al, ah get back lower nibble

and al, Ofh blank out upper one
call ascii convert 4 bits to ASCII
mov [di+l],al store in output string
ret back to caller

btoa endp
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Figure 9
......

ascii proc near ; convert AL bits 0-3 to
; ASCII (0...9,A...F)

add al, ’0’ ; and return digit in AL

cmp al, '9’
jle ascii2
add al, ’A T-’9’-l ; ’’fudge factor” for A-F

ascii2 ret ; return to caller

ascii endp

_TEXT ends

end entry

67Replacement Handler
Suppose a program performs

many mathematical calcula-
tions of random values. To pre-
vent abnormal termination of
the program by the default MS-
DOS Interrupt OOH handler
when a DIV or IDIV instruction
is attempted and the divisor is
zero, a programmer might want
to replace the Interrupt OOH
(Divide by Zero) routine with
one that informs the user of what
has happened and then contin-
ues operation without abnormal
termination. The COM program
DIVZERO.ASM (see Figure 9)

does just that.

Supplementary Handlers
In many cases, a custom in-

terrupt handler augments, rather
than replaces, the existing rou-
tine. The added routine might
process some data before pass-
ing the data to the existing
routine, or it might do the pro-
cessing afterward. These cases
require slightly different coding
for the handler.

If the added routine is to pro-
cess data before the existing
handler does, the routine need
only jump to the original handler
after completing its processing.
This jump can be done indi-
rectly, with the same pointer
used to save the original content
of the vector for restoration at
exit. For example, a replace-
ment Interrupt 08H handler that
merely increments an internal
flag at each timer tick can look
something like the code in
Figure 10.

The added handler must pre-
serve all registers and machine
conditions, except for those
machine conditions that it will
modify, such as the value of
myflag in the example (and the
flags register, which is saved by
the interrupt action), and it must
restore those registers and con-
ditions before performing the
jump to the original handler.

Figure 10: Example of a Supplementary Handler

; variable to be incremented

; on each timer-tick interruptmyflag dw ?

oldintS dd ? ; contains address of previous

; timer-tick interrupt handler

; get the previous contents

; of the Interrupt 08H vector...

; AH - 35H (Get Interrupt Vector)

; AL - Interrupt number (OSH)

; save the address of the
; previous Int 08H Handler

; put address of the new
; interrupt handler into DS:DX

; and call MS-DOS to set vector

; AH « 25H (Set Interrupt; Vector)

; AL “ Interrupt number (08H)

ax, 3508h
21h
word ptr oldint8,bx
word ptr oldint8+2,es
dx,seg myintS
ds, dx
dx,offset myint8
ax, 2508h
21h

myintSi ; this is the new handler
; for Interrupt 08H

inc cs:myflag ; increment variable on each
; timer-tick interrupt

jmp dword ptr cs:[oldint8] ; then chain to the
; previous interrupt handler

A more complex situation
arises when a replacement
handler does some processing
after the original routine exe-
cutes, especially if the replace-
ment handler is not reentrant. To
allow for this processing, the
replacement handler must pre-
vent nested interrupts, so that
even if the old handler (which is
chained to the replacement
handler by a CALL instruction)
issues an EOI, the replacement
handler will not be interrupted
during postprocessing. For
example, instead of using the
preceding Interrupt 08H
example routine, the program-
mer could use the code shown in

ANY PROGRAM THAT
MODIFIES AN INTERRUPT
VECTOR MUST RESTORE

THE VECTOR TO ITS
ORIGINAL CONDITION
BEFORE RETURNING
CONTROL TO DOS.
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I Figure 11: Replacement Handler Utilizing a Semaphore |

myint8: this is the new handler
for Interrupt 08H

mov ax, 1 test and set interrupt-
xchg cs:myflag, ax handling-in-progress

semaphore

push ax save the semaphore

pushf simulate interrupt,
allowing the previous

call dword ptrcs:oldint8 handler for the
Interrupt 08H
vector to run

pop ax get the semaphore back
or ax, ax is our interrupt handler

already running?

jnz myint 8x yes, skip this one

« now perform our interrupt
«
♦

processing here...

mov cs tmyflag,0 clear the interrupt-
handling-in-progress
flag

myint8x:
iret return from interrupt

sending an EOI to the 8259A
PIC. Thus, the machine state is
not the same as in the first
myint8 example.

To remove the new vector and
restore the original, the program
simply replaces the new vector
(in the vector table) with the
saved copy. If the substituted
routine is part of an application
program, the original vector
must be restored for every pos-
sible method of exiting from the
program (including Control-
Break, Control-C, and critical-
error Abort exits). Failure to
observe this requirement invari-
ably results in system failure.
Even though the system failure
might be delayed for some time
after the exit from the offending
program, as soon as some subse-
quent program overlays the
interrupt handler code the crash
is imminent.

Summary
Hardware interrupt handler

routines, although not strictly a
part of DOS, form an integral
pa r t  of many  MS-DOS
programs and are tightly con-
strained by MS-DOS require-
ments. Routines of this type
play important roles in the func-
tioning of the IBM personal
computers, and, with proper
design and programming,
significantly enhance product
reliability and performance. In
some instances, no other practi-
cal method exists for meeting
performance requirements.

68

Figure 11 to implement myflag
as a semaphore and use the
XCHG instruction to test it.

Note that an interrupt handler
of this type must simulate the
original call to the interrupt
routine by first doing a PUSHF,
followed by a far CALL via the
saved pointer to execute the ori-
ginal handler routine. The flags
register pushed onto the stack is
restored by the IRET of the ori-
ginal handler. Upon return from
the original code, the new rou-
tine can preserve the machine
state and do its own processing,
finally returning to the caller by
means of its own IRET.

The flags inside the new
routine need not be preserved, as
they are automatically restored
by the IRET instruction.
Because of the nature of inter-
rupt servicing, the service
routine should not depend on
any information in the flags
register, nor can it return any
information in the flags register.
Note also that the previous
handler (invoked by the indirect
CALL) will almost certainly
have dismissed the interrupt by

A CUSTOM INTERRUPT
HANDLER ROUTINE

AUGMENTS, RATHER THAN
REPLACES, THE EXISTING

ROUTINE. THE ADDED
ROUTINE MIGHT PROCESS

SOME DATA BEFORE
PASSING THE DATA TO THE
EXISITING ROUTINE, OR IT

MIGHT DO THE PROCESSING
AFTERWARD. THESE CASES

REQUIRE SLIGHTLY
DIFFERENT CODING FOR

THE HANDLER.
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69Advanced Techniques for
Using Structures and Unions
In Your C Code

Greg Comeau

tructures, unions, and typedefs,
constructs essential to organizing data in your
programs, are often misunderstood and poorly used.
In “Organizing Data in Your C Programs with
Structures, Unions, and Typedefs,” MSJ (Vol. 4,

No. 2), I attempted to clear up some of the mysteries surrounding the

use of the constructs. In this article, I build on that discussion by
Is there a solution to these

situations? There are a few;
however, some are wrong and
some are messy. Without a clear
syntactic way to remedy this,
many programmers are tempted
to change the si * and/or the
s2 * into char * (yes, either one
since the typedefs may actually
be found in #include files whose
order of occurrence in your
source file is not determinable)
and then, when using or assign-
ing to slptr or s2ptr, will cast it
into si * or s2 *, respectively.
This is a mess and a sure way to
get into trouble with a different
compiler or hardware. Casting
into s1 * or s2 * is a sure bet that
something will go wrong sooner
or later since the cast will keep
the compiler from saying any-
thing (that is, a cast is a directive
to tell the compiler that you’ve
decided that you know what
you’re doing with a mismatched
type. Suffice it to say for now
that even though a cast implies
portability, it in no way guar-
antees it).

The description of the prob-
lem having been stated, let’s dis-
cuss possible ways to go about

examining pointers to structures
and then move on to some of the
finer points of multilevel struc-
ture access, memory allocation,
and arrays.

The previous article may have
convinced some of you to use
typedef more often in your pro-
grams. However, when doing
so, you should be aware of one
particular problem; structures
that contain references to them-
selves in the form of a pointer
can begin to produce mysterious
syntax errors. Figure 1 shows an
example of such a situation. The
problem here is that the typedef
for the identifier s1 has not yet
been completed on line 2; there-
fore the compiler cannot
acknowledge the existence of
the si typedef or even the exis-
tence of any name for si and
must deduce that an invalid type
is being used.

The case shown in Figure 2 is a
different situation but a similar
problem. Two typedefs are set
up; however, they each refer to
the other (in circular fashion). In
this instance, the first typedef
always gives an error since the
second one does not yet exist.

s
AND TYPEDEFS,

CONSTRUCTS ESSENTIAL TO

ORGANIZING DATA IN YOUR

PROGRAMS, ARE OFTEN

MISUNDERSTOOD AND

POORLY USED. IN THIS

ARTICLE, I EXAMINE

POINTERS TO STRUCTURES

AND THEN MOVE ON TO

THE FINER POINTS OF

MULTILEVEL STRUCTURE

ACCESS, MEMORY

ALLOCATION, AND ARRAYS.

Greg Comeau is a principal of Comeau Computing, an independent software

development firm specializing in UNIX® and C productivity tools. He also does

consulting and training for UNIX and C users.
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Reference to Itself
forward reference through a
pointer declaration is legitimate,
an instance of the structure is
not. If we look at Figure 5, the
declaration of anotherptr is fine,
since the pointer does not yet
have to know what the shape of
the structure it points to (the
shape of the struct anothertag)
looks like. In C, this is one way
that an incomplete type can
exist. Of course, if you wish to
use anotherptr beyond having
the pointer assigned to it, you
must first define the structure to
which it points.

Similarly, the declaration of
anotherinstance will fail, since I
was attempting to include a
whole instance of anothertag
within sometag. This can’t hap-
pen because the compiler has no
way to determine sometag’s
members and therefore it is size-
less. The compiler can’t delay
this either since sometag would
not have a valid size and shape
until anothertag had a size and
shape, thus creating an error.

The problem of incomplete
types in C is an important one to
be aware of. It actually goes well
beyond the discussion presented
here and is not related to struc-
tures only. In general, you can
always refer to an incomplete
type but can never use it as a
single entity, that is, as a unit by
itself, since it is not completely
defined. Another popular place
where incomplete types are
commonly used is with external
arrays, for example, in a declara-
tion such as extern int array[ ];.
Here you can index and get the
address of the array as normal;
however, you cannot perform
some operations such as
sizeof(array) since the dimen-
sion of the array may not be in
the same source file of such a
declaration. This happens
because array only serves as a
declaration and not a definition.

Typedef/Structure Tags
Generally speaking, when

70

sldata[100];

s2data[100];

solving it. We’ll begin by break-
ing the problem down into vari-
ous steps. As we move along I
will introduce some other con-
cepts that you might not be
aware of along the way. Let me
just say in passing that Pascal
fans will be glad to hear that the
solution is to use a forward ref-
erence. We will go through sev-
eral variations of this technique.

Forward References
Let’s make the problem sim-

pler for a moment by removing
the typedef from the examples
(Figure 3). At this point it should
be obvious that the ability to
reference a pointer to si or s2 in
the code sample does not exist.
In other words, si and s2 are
clearly not types. However,
what if we were to add a struc-
ture tag to each declaration first
so that the structure shape can be
referenced instead (Figure 4)?
The key here is that now s2ptr
and slptr must not deal with a
“type of;” they only serve as ref-
erences to some structure_tag.

Note, however, that though a

THE PROBLEM OF
INCOMPLETE TYPES IN C
IS AN IMPORTANT ONE TO

BE AWARE OF. IT ACTUALLY
GOES WELL BEYOND THE
DISCUSSION PRESENTED

HERE AND IS NOT RELATED
TO STRUCTURES ONLY. IN

GENERAL, YOU CAN ALWAYS
REFER TO AN INCOMPLETE
TYPE BUT CAN NEVER USE

IT AS A SINGLE ENTITY,
THAT IS, AS A UNIT BY

ITSELF, SINCE IT IS NOT
COMPLETELY DEFINED.
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Figure 3: Defining Structs without Typedefs
you are considering the use of
#define and typedef, it is usually
safe to conclude that typedef is
the better choice. Here I have
introduced yet another major
source of confusion when using
structs by using structure tags.
However, do not get the mis-
taken impression that I’m say-
ing tags are better than typedefs,
since this is not necessarily the
case. I’ve only used tags as a
stepping stone.

For instance, now that for-
ward references are clearer, let’s
turn back to the original problem
and solve that using typedefs.
There are two common ways to
set this up (see Figures 6 and 7)—
both are equivalent. In the first,
two typedefs are set up that refer
to structure tags (and since a
typedef only serves as a syno-
nym, we only care that it
matches a structure tag that can
be defined at a later time). This
brings the two typedefs into
scope and lets you use them
from that point onward, simply
using the names si and s2 as if
they were types. This is true
even when using them within
the definitions of the structure
tags that they were based upon,
as shown in Figure 6.

The second method (Figure 7)
allows us to produce the same
result using a different method.
Actually it’s the reverse of the
previous procedure: instead of
typedefing the names and creat-
ing the structure tags last, we’ll
create the structure tags as we’re
typedefing by using structure
tags internally.

Passing/Returning Structs
I’m assuming that the reader

knows how to pass structures to
functions. It should be sufficient
to say that you should almost
always pass a pointer to a struc-
ture or the address of a structure
(&struct_var, which is map-
pable to a pointer to a structure)
as the argument to a function
instead of the actual structure

1 struct { ■ 71
2 s2 *s2ptr; I / I
3 char sldata[100]; 1 ‘ *
4 } si;
5
6 struct {
7 si *slptr;

8 char s2data[100];

9 } s2;
10
11 main()
12 {
13 si slinstance;

14 s2 s2instance;

15
16 /* ••. */
17 }

Figure 4: Adding a Structure Tag

1 struct sl_tag {
2 struct s2_tag *s2ptr;

3 char sldata[100];

4 };
5
6 struct s2_tag {
7 struct sl_tag *slptr;

8 char s2data[100];

9 1;
10
11 main()
12 (
13 struct sl_tag slinstance;

14 struct s2_tag s2instance;

15 ~
16 / * . . . * /

17 }

itself. In other words, pass the
structure by reference, not by
value. The latter case can require
an unreasonable amount of
stack space and, if you are not
careful, can cause symptoms
that include random crashes,
lockups, invalid pointers, and
other such problems.

Returning a structure should
also be through apointer, mostly
for the sake of efficiency. This
involves three areas: returning a
complete structure from the
function, returning a pointer to a
structure, and the case where
just some of the structure's
members are accessed after
function(s) return them.

Returning a Structure
When returning a complete

structure from the function, con-
sider what the compiler must
go through. A typical compiler
might copy the structure into a

PASS A STRUCTURE
BY REFERENCE, NOT BY

VALUE. THE LATTER
CASE CAN REQUIRE AN

UNREASONABLE AMOUNT
OF STACK SPACE AND,

IF YOU ARE NOT CAREFUL,
CAN CAUSE SYMPTOMS
THAT INCLUDE RANDOM

CRASHES, LOCKUPS,
INVALID POINTERS, AND

OTHER SUCH PROBLEMS.

MAY 1989



MICROSOFT
SYSTEMS
JOURNAL

Figure 5: Nonlegal Formal Referenee

72 from functions. Note the series
of events that must occur—fl
will return a struct psi by copy-
ing it into a static area; next that
static area might be copied onto
the stack, which is accom-
plished on some systems by
generating lots of “move long
word” instructions instead of a
loop. The same will be per-
formed for f2’s return value.

The end result is reached by a
slow and tedious process. But
that’s only half the problem. If
you pass the structures returned
from fl and f2 by their addresses
as shown in line 26 (you can do
this since a structure is an aggre-
gate and not a simple scalar),
you may find that your compiler
does not work as expected. Both
fl and f2 might return the same
address (remember our friend
provided by the linker), thus the
addresses and strings printed out
by func2 could be the same.

Returning a Pointer
The second case is quite

simple: don’t return a pointer to
a structure that’s automatic. Fig-
ure 9 shows an example of such
misuse. Notice that func returns
&temp, which is perfectly valid
C but not valid logic. When func
exits, the temp structure—not
the temp tag, which has file
scope in this example—will ter-
minate since it is local to a func-
tion and nonstatic. Since temp
has terminated, accessing it will
result in undefined behavior and
most likely a program crash.

Note that changing the decla-
ration to static struct temp temp;
will not cause any problems.
Because temp is now static it
will have a permanent existence
during the life of your program.
In this case it doesn’t matter if
the function that houses temp is
currently executing or not; the
fact is that temp is addressable
since it’s static.

Additionally, whether temp is
in scope or not is irrelevant here.
Scope relates only to identifiers.

1 struct atag {
2 struct anothertag *anotherptr;
3 /* reference to another tag before i'
4 it comes into scope is fine */ J
5
6 I
7 struct sometag { ;
8 struct anothertag anotherinstance; p
9 /♦ This is an error since a

10 description of anothertag
11 is not in scope */ \
12 }; j
13
14 main()
15 { r
16 / * . . . * /  j
17 }

Figure 6: Using Typedefs that Refer to Structure Tags
1 typedef struct s2_tag s2;
2 typedef struct sl_tag si;
3
4 struct sl_tag {
5 s2 *s2ptr;
6 char sldata[100];
7 };
8
9 struct s2_tag {

10 si *slptr;
11 char s2data[100];
12 };
13
14 main()
15 {
16 struct sl_tag slinstance;
17 struct s2__tag s2instance;
18
19 / * . . . * /
20 }

static area set aside by the com-
piler and linker. This area can be
thought of as a union of every
structure in your program. This
of course means that it must be
large enough to hold any given
structure. It also needs to be ad-
dressable without any idiosyn-
crasies, and must be static with
suitable alignment qualities.

This copying alleviates much
of the game playing the gener-
ated object code goes through
since there is usually a standard
function calling and return con-
vention that the compiler writer
will try to make the code adhere
to. There are, however, prob-
lems. Consider the program in
Figure 8, specifically the call to
func on line 25. This should
work as if fl and f2 return base
types, since you are, after all,
allowed to return structures

YOU WILL ONLY BE ABLE
TO OBTAIN AN IDENTIFIER’S

ADDRESS WHILE IT IS IN
SCOPE; BUT ONCE YOU

HAVE THE ADDRESS OF AN
OBJECT, DURING ITS

LIFETIME ITS YOURS TO
DO WITH AS YOU PLEASE

(WITHIN REASON OF
COURSE).
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Figure 7: Typedefing Using Structure Tags Internally

It does not deal with concepts
such as variables—for instance
setting a pointer to an absolute
position and accessing it—or
things like addresses. Of course
you will only be able to obtain an
identifier’s address while it is in
scope; but once you have the
address of an object, during its
lifetime it’s yours to do with as
you please (within reason of
course).

Member Access
The last scenario is one in

which a function returns a struc-
ture, but you’re only interested
in accessing a few of its mem-
bers. Think about this for a
moment. Should you access the
members by returning the struc-
ture and be hit with all the copy-
ing or should you take the easy
route by returning a pointer to
the structure?

In the case of an operating
system call, you’ll rarely want a
pointer to one of the internal data
structures of the operating sys-
tem unless you’re writing a
device driver or a very special-
ized application that requires
some special knowledge.

In another situation you might
find you’re calling a C library
function instead of a system call,
and are most likely accessing
something in your “process’s
space.” But the arguments to the
particular library you are using
are usually a given and neither
can nor should be changed.
Routines may accept an argu-
ment that’s a pointer to a struc-
ture (one that you’ve properly
allocated based on some
#include file) and completely
avoid a return value, which
would have been a structure.

The routine itself will set the
structure’s members as might be
appropriate. This will prevent
the situation I’ve presented and
is a viable way to code some of
your programs. In addition, you
might find routines of your own
that use large structures, and

1 typedef struct sl_tag { 
*

2 struct s2_tag *s2ptr;

3 char sldata[100];

4 };
5
6 typedef struct s2_tag { 

■.

7 struct sl_tag *slptr; 
(

8 char s2data[100];

9 };
10
11 main()
12 {
13 struct sl_tag slinstance;

14 struct s2_tag s2instance;

15
16 /* ... */
17 }

structures and instances of the
other structures. Chances are
that you will never encounter
this specific situation. Never-
theless I’ve included it to pro-
vide some further insights into
structures in general.

Most of you can no doubt
construct a simple structure
member reference as in line 21
of Figure 10. Some of you can
even create a multistructure or
multilevel reference as in line
23—but without certainty that it
is correct (it is). Anything
beyond this, however (meaning
those nasty creatures we call
pointers), is unfamiliar territory.

To understand line 23, you
must be aware that s3 contains
an instance (that is, an occur-
rence) of an s2tag structure (an
s2tag structure named s2inst),
which in turn contains an
instance to an si tag structure
(slinst), which of course con-
tains an instance of an integer
identifier named slvar.

To use each of these instances,
you simply create a structure
access to the member, as shown
in line 21. Since the operator
precedence of the dot (.) oper-
ator presents no problem and its
associativity is naturally ori-
ented to be left to right, the setup
is simply

structure!.<...>.structureN

which line 23 shows.
Remember that this all takes

place within s3 because s3 con-

instead of passing whole entities
back and forth, it is often worth
creating another smaller struc-
ture which is a subset of the
larger one and manipulating that
instead.

Depending upon your logic
and program design, you will
also find it worthwhile to return
a pointer to a structure even if
only one of two members is
going to be used. You only have
to apply the arrow operator (->)
to the returned pointer to access
the member in question, rather
than dealing with the whole
structure. Remember that you
may be calling a function con-
taining an instance of the struc-
ture it’s returning a pointer to as
an internal static identifier.
However, the consequence is
that calling the function twice
could destroy the previous value
of the structure, so the calling
function must account for this
and copy all the data it needs
before calling the previously
called function again.

This presents another situa-
tion in which either the caller of
the function or the function itself
dynamically allocated the struc-
ture. You must therefore be
careful to control the allocation
of the structure and be just as
careful to make sure that you
free it properly.

Structure Access
Figure 10 contains both struc-

tures with pointers to other
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Figtire 8: Returning a Complete Structure from a Function |
1 struct psi {
2 char *p;
3 char array[1024 - sizeof(char *)];
4 } vl;
5
6 struct ps2 {
7 char *p;
8 char array[512 - sizeof(char *)];
9 } v2;

10
11 struct psi fl()
12 {
13 vl.p = "hi there";
14 return (vl);
15 }
16
17 struct ps2 f2()
18 {
19 v2.p = "HI THERE";
20 return (v2);
21 }
22
23 main()
24 {
25 func(fl(), f2Q);
26 func2(&fl(), &f2()); /* This doesn't mean the
27 address of fl and f2•
28 It means the address
29 of the structures they
30 return—Remember
31 precedence? */
32
33
34 func(struct psi vl, struct ps2 v2)
35
36
37 {
38 printf("%s\n", vl.p);
39 printf("%s\n", v2.p);
40 }
41 func2(struct psi *vl, struct ps2 *v2)
42
43
44 {
45 printf("%ld\n", vl); /* print out the addrs
46 that vl and v2 point
47 to, these */
48 printf("%ld\n", v2); /* may also be printed
49 with a %p instead of
50 %ld */
51 printf("%s\n", vl->p);
52 printf("%s\n", v2->p);
53 }

pretation of lines 27 and 28 very
easy. Briefly then, line 27 uses
the fact that ps3->ps2 references
an s2tag, which contains a ref-
erence to an sltag. This allows
ps3->ps2->psl to be assigned to
an identifier such as si, which
has an s1tag size and shape. Line
28 uses ps3->ps2->ps1, which is
a pointer to an sltag and there-
fore a reference to a member
such as si varis possible as well.

Every pointer used in lines
25-27 needed to be initialized.
You could not simply have
coded the access to slvar in line
28 without the other assign-
ments. That would not be valid
logic since every pointer in this
example must access a memory
location in order to be used.

Be careful here since this con-
straint is something that you as
the programmer must take care
to enforce. The compiler doesn’t
care, for instance, that you may
have coded line 28 without lines
25 through 27. You may actually
have performed the structure
pointer assignments in those
lines in another part of the pro-
gram based on if/else logic and
not necessarily right before line
28. In general the compiler has
no easy way of determining this.

The moral is to make sure all
your assignments and pointers
are set up properly since the
compiler is not going to give you
a warning or error message for
failing to initialize them cor-
rectly. Problems of this nature
will typically begin to crop up
during the execution of your
program; more often than not
they will be sporadic and very
hard to debug. If you provide the
extra ounce of prevention dur-
ing coding, you will avoid many
of these situations.

Line 29 really means less than
you might think it does. If you
take a closer look at the code,
you will see that the execution of
line 27 allowed line 28 to gain
access to si. slvar.  However,
this may work properly even if
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tains an s2tag and s2tag contains
an si tag. Under a different case,
such as in lines 25-28, the code
will use references to s3tag,
s2tag, and sltag by way of ps3,
ps2, and psi, which go beyond
the limits of s3 to gain access to
other variables such as s2 and s1.

On line 25, ps3 is set equal to
the address of s3. Note the use of
&s3 instead of s3 since we want
to obtain the address of s3 and
not an assignment to the pointer
of the actual contents of the s3
structure. Once this is done, we
can reference the members of

the structure (s3 in this case) that
ps3 points to by using the ->
operator. It happens that we
want to assign to ps2, which is
another structure pointer (a
pointer to an s2tag). This assign-
ment will take place just as
smoothly as the ps3 assignment.

The evaluation of the arrow
operator will take place in
exactly the same order of prece-
dence as the dot operator. Again,
this will occur with left to right
associativity. Our knowledge of
line 23 coupled with this dis-
cussion should make the inter-

MAY 1989



Figure 9: Returning a Pointer to an Automatic Structure

ps3 and/or ps3->ps2 are not
valid pointers. Or I should say it
appears to work properly—can
you see the problem here?

If we work under the assump-
tion that line 25 was accidentally
deleted from the source file,
would the program continue to
work properly? Perhaps. If it did
continue to work, should it
have? No. As explained above,
it would most certainly compile
so that’s not the concern here. It
would most likely execute under
DOS as though nothing were
wrong. However, most versions
of the XENIX® operating sys-
tem, as well as OS/2 systems,
would produce a general protec-
tion fault because of the invalid
memory access.

This would occur because ps3
is an external (that is, an external
defined in the same source file
with no initializer) variable and
would therefore be implicitly
initialized to zero. If this is the
case, then line 26 would be
indexing ps2 off a pointer that
points at memory location zero.
That assignment would then be
assigning something to a mem-
ory location of 0 + sizeof(int),
which may map into memory
location 2 and then be treated as
the location of ps3->ps2, which
we all know is wrong. However,
if an access to that location at
that moment in time does not
stomp on something it shouldn’t
(and in many cases this is not as
clear as the scenario that I’m
describing), execution will con-
tinue with no apparent damage.

Microsoft® C Optimizing
Compiler versions 5.0 and later
usually protect against the case
above with their infamous
R6001 run-time error message
upon program termination;
however, this is not something
you should particularly depend
upon, and it shouldn’t be relied
on to help solve your problems.
Furthermore, the R6001 error
functions only when your pro-
gram writes in low core.

751 struct temp {
2 int members;
3 / * . . . * /
4 };
5
6 struct temp *
7 func()
8 {
9 struct temp temp; /* yes, structure tags *and*

10 structures can have the

11 same name */

12
13 return (&temp);
14 }
15
16 main()
17 {
18 struct temp *temp;
19
20 temp = func();
21 /* Expressions using temp->???> */

22 }
23

constructing anything with ps2.
(note the dot) is not going to
work because the dot operator
requires that the left operand
have a structure type. This struc-
ture type must be either an iden-
tifier reflecting a structure
name, or a dereference of a pa-
renthesized pointer to structure
type as in ps=s; . . . (*ps).m. . .;.

The proper way to do this is
shown on line 32, which is the
same as line 27, only instead of
referencing another pointer
(psi), we’re accessing a real
structure (slinst).

You may see another solution
to this problem since you should
know from your knowledge of C
that a structure reference such as
pointer->member is translat-
able into (*pointer).member.
However, how do we implement
it in this case? Line 33 seems like
a good possibility to resolve this
problem (let’s not even consider
the syntax of line 34) but it does
not go far enough. Unfortunate-
ly, compiling this will not clue
you in any better since most
compilers will simply report a
syntax error. This isn’t imme-
diately intuitive—at least not
until you see exactly what’s
going on behind the scenes.

You need to ask yourself:
What exactly is ps2? We know
it’s a pointer, and we think we

Anything beyond that certain
magic number and you’re on
your own. Therefore, make sure
that your pointers are always
legitimate regardless of whether
or not your program executes
properly.

Clearly looks can be deceiv-
ing in this case. An excellent
example of this scenario is when
you merge together different
stubs to your program and sud-
denly something seems to be
going wild. Most likely this is
due to invalid pointers pointing
to locations that cannot be
touched without causing a prob-
lem. This would occur because
your program modules’ vari-
ables and functions will most
likely be in different memory
locations as well as in a larger
program. When this happens,
errors that didn’t show up in the
stubs will begin to appear.

Given the preceding informa-
tion, we’re now ready to tackle
some of the other derivations in
Figure 10. For instance, if we
wanted to access slinst indi-
rectly through the ps2 pointer,
we might use code similar to line
31. If we read this left to right
(since both -> and . have equal
precedence and left to right
associativity), you’ll notice that
the part referring to ps2.slinst is
in error. Since ps2 is a pointer,
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I Figure 10: Multilevel Structure Access |
i struct sltag {
2 int slvar;
3
4

} si;

5 struct s2tag {
6 int s2var;
7 struct sltag *psl;
8 struct sltag slinst;
9

10
} s2;

11 struct s3tag {
12 int s3var;
13 struct s2tag *ps2;
14 struct s2tag s2inst;
15
16

} s3;

17
18

struct s3tag *ps3;

19 main()
20 (
21
22

si.slvar = 99;

23
24

s3.s2inst .slinst.slvar = 5;

25 ps3 = &s3;
26 ps3->ps2 = &s2;
27 ps3->ps2->psl = &sl;
28 ps3->ps2->psl->slvar = -99;
29
30

printf("slvar=%d\n”, si.slvar);

31 /* ps3->ps2.slinst .slvar = 11; */
32 ps3->ps2->slinst .slvar = 22;
33 /* ps3->(*ps2).slinst .slvar = 33; */
34 /* ps3->*ps2.slinst .slvar = 44; */
35 /* ps2 = 0; */
36 /* might as well have called this 'abccba' */
37 (*ps3->ps2).slinst .slvar = 55;
38 /* *ps3->ps2.slinst .slvar = 66; */
39 printf(”s3.s2inst .slinst .slvar=%d\n",
40
41

s3.s2inst .slinst .slvar);

42 ps3->ps2 = &ps3->s2inst;
43 ps3->ps2->slinst.slvar = 22;
44 printf(”s3.s2inst .slinst .slvar=%d\n",

s3.s2inst .slinst .slvar);
45 }

equivalent to line 37. As dis-
cussed in the previous article,
this line would produce an error
because of the precedence of the
* operator.

As a final note, make sure that
you understand that lines 32 and
37 do not access the same slvar
as in line 38. Again, recall that an
s3tag contains a pointer to an
s2tag and an instance of an
s2tag—they are not the same
thing. You could point the s2tag
pointer (ps2) to the s2tag
instance (s2inst), but if you had
wanted to do that, you’d need to
code lines 39 2.

Multilevel Structure Access
Involving Functions

There are many situations in
which you may call functions
that return structures, or pointers
to structures and the use of tem-
porary variables becomes a nui-
sance. Consider the function
example1 in Figure 11. Is it clear
that all of the lines from 27
through 30 will print out 12345?

Line 27 ought to be self-
explanatory as a reference to
si. slvar, which has been stat-
ically initialized to the value
12345. Line 28 involves a struc-
ture analysis exactly like any
other, with the same precedence
and associativity of operators
involved. Do you care that there
is a ( ) involved? No, because
you memorized the top line of
the Operator Precedence/Asso-
ciativity chart. Therefore since
si returner returns an si tag type
and explicitly returns si, why
not just treat it like line 27? It’s
simply a structure.member
reference.

Line 29 presents a function
that returns a pointer to an s Itag,
but nothing is that different here
even though it does involve a
function. If it returns a pointer,
access it as a pointer->member
reference. Of course line 30 is
just a familiar pointer->member
case being mapped into
( pointer).member.

76

know its name but in fact its
name is not ps2. If it were, you
would be able to say something
like ps2 = 0; and that is clearly
unreasonable (compile it to
prove it), since there is no iden-
tifier with a name consisting
solely of ps2. Note that there is
one named s3.ps2 and another
that can reference it through
pointer notation, as in ps3->ps2.
Therefore, these are two names
we must refer to in this particular
program when accessing ps2.

Tying this back to the
(*pointer).member notation
discussion above, the correct
syntax for line 33 is shown in
line 37 since ps3->ps2 is the
proper pointer reference to ps2.
This in no way infers line 38 is

DEPENDING ON YOUR
LOGIC AND PROGRAM

DESIGN, YOU WILL ALSO
FIND IT WORTHWHILE TO
RETURN A POINTER TO A

STRUCTURE EVEN IF ONLY
ONE OF THE TWO MEMBERS

IS GOING TO BE USED.
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way, because sizeof can accept a
derived type as its argument, the
second sizeof says, “give me the
size of an array of x characters,
where x is 1.”

An equal yet slightly less
messy approach is to make use
of the offsetof macro. Under this
circumstance, the structure tag
would still contain a char
data[l], however instead of

ppacket = (struct
apacket *)malloc(

sizeof(struct apacket) -
sizeof (char [1] ) +
apacket .packetsize);

you would code:

ppacket = (struct
apacket *)malloc(

of fsetof(apacket, data) +
apacket .packetsize);

since the offset of data within
apacket would represent the
length of the previous fields (in
our case all the fields) in
apacket. I feel this is a superior
method. With offsetof it’s per-
fectly clear: get the size of the
structure and add it to the size
desired for the data.

Once you have a pointer of the
correct length, you may copy the
structure members as appropri-
ate. However, before leaving
this subject, let me once again
refer you to the March article
and encourage you to reread the
sections dealing with structure
holes and structure packing
since you may find that you will
need to set up your structures in
the same “manner’’ as the one(s)
which you are copying it from.

This scheme of creating
dynamic structure images is, as
most things, not without prob-
lems and requires some careful
thought before you use it. For
instance, it should be clear that if
you use this scheme, every ref-
erence to the packet’s members
will be through a pointer.

This is due to the variable
length data that must remain as a
single unit. It's important to note
that if you do not need a variable
length structure, you should

another field that encodes the
size of the data length, then
derives some unions and associ-
ated code to perform something
like the codedrecord example in
the previous article. I’m sure we
can all agree, however, that that
would be a big mess.

The best answer is to avoid the
constraints altogether and work
with what you have been given.
In other words, since you know
what the members of the struc-
ture that represent the control
information are, why not use
that to your advantage? This,
along with the ability to allocate
memory dynamically through
standard library routines, such
as alloc, calloc, and malloc, is all
you need.

A first attempt at a solution
might result in a structure tem-
plate and sample code such as:

struct apacket {
int packethead;
int packetcontroll;
int packetcontrol2;
int packetsize;
char data[0];

};
< other code >

struct apacket apacket;
struct apacket *ppacket;
ppacket = (struct

apacket *)malloc(
sizeof(struct apacket) +
apacket .packetsize);

Unfortunately, C does not
allow for zero-length data items
to occur, even in structure tags.
(Note that some compilers allow
this, but they are clearly in error.
This is not a portable construct
and should be completely
avoided.)

Many of you will be quick to
point out that making data into a
1-dimensional array with a
bound of 1 (for example, char
data[l]) should work without a
problem (which is true). Note
that the 1-byte length will need
to be subtracted from the value
that’s being passed to malloc.
This length can be presented as
sizeof(char), sizeof(char [1]), or
simply the constant 1 since in
this case they all represent and
refer to the same thing. By the

These variable references are
all rather natural. The alterna-
tive is to code something along
the lines of the statements
shown in the example2 function.
As you can see, this makes
things longer and more tedious
than necessary and in this pro-
gram needn’t be used. This point
hits home when you realize that
you may have a second structure
involved, such as s2, and as in
the previous section, there are
pointers and references to all
sorts of variables. This would
result in code such as that found
in examples and example4 (or
even more complex situations).

Structures and Malloc
There is one other important

point to consider. Typically, one
must deal with packets of infor-
mation. In other words, you may
find that you’re being fed some
group of data that is prefixed
with control or status informa-
tion and is then followed by the
actual data being described.
This would normally occur
when dealing with communica-
tions, but it needn’t occur only
there. The problem this presents
to the C programmer is that the
information part of the packet is
finite and predictable, whereas
the data portion may be variable
in length. For instance, you may
find that the following structure
is sufficient for describing the
control information:

struct apacket {
int packethead;
int packetcontroll;
int packetcontrol2;
char data [???];

};

But how large do you make the
dimension of data[ ]?

If you make it too small, you
could lose data. If you make it
too large, you could waste crit-
ical space in your program or
machine state. Make it reason-
ably large, and you may not
know if that size will be too
small for the future—then what
do you do? You could add
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think about organizing your data
in a less elaborate way. For
example, you could change the
apacket structure tag layout so
that data is not an array but a
character pointer.

Allowing for this circum-
stance will usually be far more
natural, since apacket instances
must be set up (using a char *data;
construct) and then referenced.
Note that now all the structure
members can be accessed direct-
ly with the dot operator. The
close relationship between
arrays and pointers allows data
to be referenced in array nota-
tion, if desired, as follows:

78

struct apacket somepacket;
somepacket .data =

(char *) malloc(
somepacket .packetsize);

somepacket .data[i] = <...>;

♦somepacket .data = <...>;
/* Note precedence with

no parens? */

The only ramification of this
example is that you will need to
free the memory block associ-
ated with somepacket.data when
you no longer need the data (for
dynamically allocated data, the
programmer controls the life-
time of the memory block).

Arrays
Since we are on the subject of

dynamic memory, it’s worth
dwelling a bit on arrays and
structures. First, look at line 21
of Figure 12. By now I would
hope that you wouldn’t have
much of a problem interpreting
it. Nor should you have a prob-
lem deciphering lines 24-26,
where a pointer to a structure is
set equal to an element of an
array (which is therefore using
only one structure).

The use of arrays (and point-
ers) implies that their usage and
idiosyncrasies remain the same
regardless of whether they are
used inside structures or as
structures (for instance, the syn-
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Figure 12: Multilevel Structure Access Involving Arrays

79tax and semantics of passing an
array to a function does not
change because the array might
consist of structures rather than
a base type like int).

I’d also like to direct your
attention to the use of HBOUND
that occurs on line 20. It’s
actually very simple (as lines
17-18 demonstrate) and is very
handy when dealing with a good
many array situations.

Finally, if you needed to use
and access si strictly via point-
ers, an alternate to lines 20-22
can be found in lines 29-35. The
latter lines are surely more cryp-
tic; however, they do remove the
indexing notation, which would
be advantageous if you were to
reference other elements of the
structure or even repeated occur-
rences of the same element.

Returning to HBOUND, you
should study the constructs on
lines 29 and 32-33. The code is
checking to see if the pointer has
gone beyond the end of the array
by checking it against an array
dimension that is one greater
than the array. In other words,
psi will be checked against
&sl[10], which is one greater
than nine (remember that in C
arrays start at element 0). Simi-
larly, cp will be checked against
&psl->charray[20]. Note in
particular how all of this occurs
without having to explicitly use
any constants in either of the two
nested loops that occur in this
program. You should strive for
this type of construction in your
own programs, whether you are
dealing with structures or not.

Summary
Although this article has

focused specifically on struc-
tures and the different aspects
of having pointers to structures,
accessing struct members,
avoiding memory conflicts with
arrays, and memory allocation,
most of these concepts apply to
unions as well. With the infor-
mation presented here, added to

1 #define HBOUND(array) (sizeof(array) /
2 sizeof(array[0]))
3
4 struct sltag {
5 char charray[20];
6 };
7
8 struct sltag si[10];
9 struct sltag *psl;
10
11 main()
12 {
13 int i;
14 int j;
15 char *cp;
16
17 printf("%d/%d=%d\n", sizeof(si),
18 sizeof(si[0]), HBOUND(si));
19
20 for (i =0; i < HBOUND(si); i++)
21 for (j = 0; j < sizeof(si[0].charray); j++)
22 si[i].charray[j] = ’\0';
23
24 psi = &sl[5];
25 psl->charray[2] = 5; /* Note that this is ASCII 5 */
26 (*psl).charray[2] ■ 5; /* not '5' */
27
28 printf("%d\n", sizeof(psl->charray));
29 for (psi = &sl[0]; psi < &sl[HBOUND(si)];
30 psl++) {
31 cp - psi->charray;
32 while (cp < &psl->charray[sizeof(
33 psl->charray)])
34 *cp++ = ’\0';
35 }
36 }

the insights presented in the pre-
vious article, you now have a
solid base of knowledge con-
cerning the use of structures.
When you add to this the
insights into unions, typedefs,
and C declarations that you have
been storing up from the past
several issues, you are ready for
some serious C programming.

THE USE OF ARRAYS
(AND POINTERS) IMPLIES
THAT THEIR USAGE AND

IDIOSYNCRASIES REMAIN
THE SAME REGARDLESS
OF WHETHER THEY ARE

USED INSIDE STRUCTURES
OR AS STRUCTURES.
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